
F. Wagner November 2003

StateWORKS in industrial control.doc 1/8

StateWORKS in industrial control

Introduction
StateWORKS covers both the design and implementation of a control system. StateWORKS
is a universal system; it can be used for creating any software system. Anyway, there are
essential differences between for instance an industrial control and a telecommunication
system. Particularly, the telecommunication system does not “know” digital inputs or DA-
and AD-converters which are the essence of the industrial control.

StateWORKS RTDB contains a large set of object types which allows for handling of
frequently used input / output signals. This case study shows the design process of such a
system including the discussion of the basic Real Time Data Base (RTDB) objects required
for industrial control. RTDB is the heart of the StateWORKS run-time systems and is
specified in StateWORKS Studio during the design process.

Example

Inputs:
- Command (Number – integer, 1: Start)
- Temperature Too High (Bool, HIGH: Temperature too high)

 Reg

Chamber

Pump

Pressure
Regulating

System
Actual
Pressure

Command

Temperature
Too High

Required
Pressure

Set Pressure

Pressure
Error

Pressure
Ok

Timer

 Counter

StateWORKS in industrial control.doc 2/8

- Actual Pressure (float, value from 12-bit AD converter: 0…4095 corresponding to
0...1000 mBar)

- Required Pressure parameter (float, value from operator: 0…1000 mBar).

Outputs:
- Alarm (String, Message: Pressure error)
- Digital Signal (Bool, HIGH: Pressure is Ok, to control LED)
- Set Pressure (float, Required Pressure parameter: 0…1000 mBar corresponding to

0…2047 for 11-bit DA converter).

Internal (at least):
- Timer
- Counter.

Requirements:
The discussed system is a typical system where a regulator does the principal job stabilizing
some value (to make it more realistic we called this value a Pressure). This regulator is
supervised by a control system which task is to supply the settings for the regulator and to
detect malfunctioning. In addition, the supervising system is the interface to the operator,
informing him about the control situation and passing commands or required values to the
control system.

The Reg control system is to supervise an automatic control system (Pressure Regulating
System) which stabilizes a Pressure in a chamber. The Regulator receives the Actual Pressure
value and controls the Pump.

The operator defines the Set Pressure value by setting the Required Pressure value and starts
the Reg supervision sending the Command Start (number = 1).

If the Pressure value reaches the required value ±5% of the Required Pressure it is signalled
by a LED controlled by a Pressure Ok signal. If the Required Pressure value is not reached in
a certain time the control system issues an alarm message to inform the operator about the
failure and stops the supervision.

If the Required Pressure value is once reached and later exceeds the allowed range the control
system should tolerate it, if it does not last longer than a certain time and if it occurs not more
than a certain number of times. Otherwise the system should switch off the supervision and
produce the alarm informing the operator about the failure. The system restarts the
supervision on receiving again the command Start.

If the operator changes the Required Pressure value the Timer as well as the counting of
failures should be reset and begin from 0.

The control problem
The control system as described above has to operate in a heterogeneous environment. It
receives different type inputs: an integer number (Command), two float numbers (Required
Pressure and Actual Pressure) and a Boolean signal (Temperature Too High). In addition, the
Timer and Counter will generate expiration signals (OVER). On the outputs side, the control
system produces also signals of different types: a float number (Set Pressure), alarm text
(Pressure Error) and Boolean signal (Pressure Ok). In addition, the Timer and Counter are
controlled by commands, like Start, Reset or Stop.

StateWORKS in industrial control.doc 3/8

The input and output signals have several properties. The signal Actual Pressure coming from
an 12-bit AD-converter is a number in the range 0…4095 which corresponds to 0…1000
mBar but the range which is considered as correct is ±5% of the Required Pressure. The
practical version could be more complex: the range limits could be parameters or x% of the
Required Pressure where x is a parameter. The imaginable variation of signal properties is
large. Similarly, we could analyze all signals showing their varieties. In system design we
have also to foresee possibilities to extend the requirements in the future.

The Set Pressure output value is a number in the range 0…1000 mBar and it is passed to an
11-bit DA-converter which output changes than in the range 0...2047.

SWLab simulates 12-bit DA- and AD-converters for AD- and DA-converters. Therefore, we
will use the entire range for AD-converter (0...4095) but only half of the range for the DA-
converter, moving its range by 2048 (offset).

The interesting question is how to master the control, how to filter the essential control factors
from the irrelevant details. The problem seems at first sight to be relatively simple but if we
consider all details it is getting complex.

The StateWORKS solution

Behavior
StateWORKS is based on a strict partition between the data and control flow. Using
StateWORKS approach we concentrate in the beginning on a control specification. We use
state machine model to specify the behaviour of the control system. To start the specification
we have to define the control relevant properties of inputs and outputs. We will use these
properties to specify the behaviour. Let’s “forget” for a while the details like numerical values
of Pressure or allowed limits of the Actual Pressure value. Let’s concentrate only on issues
that determine the system behaviour.

First we analyze inputs and find names that describe well the required control properties:

- Command: we need a command to start the system; let’s call it Cmd_Start.
- Required Pressure: we need the information that the parameter has changed; let’s call

it RequiredPressure_Changed.

- Actual Pressure: we need information whether the Pressure is ok or wrong; let’s be
specific defining 3 values: Pressure_OK, Pressure_TooHigh, Pressure_TooLow.

- Temperature Too High: we call this information Motor_TooHot.
- Timer: we need a signal when Timer elapses; we call it Timer_OVER.

- Counter: we need a signal when Counter reaches its limit; we call it Counter_OVER.

Then we define actions to be done:

- Set Pressure: we need two signals which control this value; we call them
SetPressure_On and SetPressure_Off.

- Pressure OK: we need two signals to control LED; we call them LED_On and
LED_Off.

- Pressure Error: this is info for an operator; we call it Pressure_Error.

- Timer: we need a signal to start the Timer; we call it Timer_ResetStart.
- Counter: we need a signal to start the Counter; we call it Counter_ResetStart.

StateWORKS in industrial control.doc 4/8

Using these definitions, we try to specify a state machine which realizes the requirements
described in the first chapter. During the specification we may decide to add additional
names. The first set of input and output names is just a starting point.

The basic component of a state machine is a state. After some consideration we could propose
the following states:

- Init: where the state machine begins after start-up and returns after error.

- Start: the state machine sets the Pressure_Set, starts the Timer and Counter. The
supervision starts, the state machines waits for the ActualPressure to reach the
SetPressure value.

- Regulating: the ActualPressure is Ok and the state machine signals it by switching on
the LED.

- Error: the ActualPressure is too low or too high and the state machine signals it by
switching off the LED. If the ActualPressure value returns to the allowed range the
state machine returns to the state Regulating, otherwise it goes to the state Init
(controlled by the Timer and Counter).

Using these state names and previously defined input names we specify the following state
transition diagram which should realize the required behaviour:

Always

Cmd_StartInit

1

E:
Press_OK

Motor_TooHot | Timer_OVER

Start

2

E:
I:

X:

Press_TooHigh | Press_TooLow

Motor_TooHot

Regulating

3

E: X:

Press_OK

Counter_OVER | Timer_OVER

Error

4

E:
I:

X:

The state transition diagram shows the states, transitions and transition conditions. Thus, it
gives a general idea about functioning of the state machine. To fully understand the state
machine we have to see the actions of the state transition diagram. Normally, it is impossible
to show them on a state transition diagram as it would be overloaded. The actions are seen in
the state transition table. As an example we show here the state transition table of the state
Start.

StateWORKS in industrial control.doc 5/8

Start E: SetPress_Set
Swip_On
Counter_ResetStart
Timer_ResetStart
Ofun_CalcLimit

X: Timer_Stop

RequiredPress_CHANGED Timer_ResetStart

Regulating Press_OK

Init Motor_TooHot | Timer_OVER

In addition to the state transitions that have been displayed on the state transition diagram we
see here the Entry, EXit and Input actions. By entering the state the state machine sets the
SetPressure value (SetPressure_Set) and starts the Timer and the Counter. We see also two
additional Entry actions: Swip_On (switching on the supervision of the ActualPressure value)
and Ofun_CalcLimit (calculation of limits for the supervision) which were introduced in
course of detailed analysis of the requirements. There is also an Input action: when the
RequiredPressure parameter changes the Timer is restarted.

The point is that we specified the behaviour of a control system using names representing
control relevant input and output properties and states. This behaviour specification is a very
stable component of the system: it is independent from the implementation or signal features
(range, data type, scaling, offset). To be more specific, we do not care for instance how
RequiredPressure_CHANGED or Pressure_OK or Ofun_CalcLimit come into being. We
want to describe the behaviour using only information which influences it and we use for it
expressive names. The implementation, representation, source of that information may
change but it does not influence the system behaviour.

Real signals (objects)
The state machine specification described in the previous chapter is a “virtual” one. It uses
abstract ideas in a form of names to describe behaviour. Eventually, we have to “link” the
“virtual” names with real objects.

Any signal (we call it object because they are represented by RTDB objects) has two faces:
the first one represented by control properties and the second one represented by object
properties. The control properties are represented by names that describe features that may be
used for control. We consider the control properties as “virtual” because they cannot be
“seen”; they are just descriptions which make sense in the world of automata. In contrary to
the control properties the object properties are “real”, physical features expressing time,
voltage, units, etc.

In StateWORKS we do the link between the control and real properties using a Real Time
Data Base (RTDB) which automatically filters out the control properties from real objects
supplying the control information required by the “virtual” specification. This information can
be than used by a standard Executor that realizes the state machine behaviour.

StateWORKS in industrial control.doc 6/8

To describe the interface between the “virtual” environment of a state machine and the real
objects let’s take some examples:

- Motor_Temperature is a digital input which may be true or false (represented for
instance by high and low voltage values). It is a true Boolean value. In the virtual
environment the digital input is represented by two names: HIGH and LOW. Note that
the two names represent an extension of a Boolean signal as this definition allows
expression of four control properties:

o HIGH – corresponds to the Boolean true,

o LOW – corresponds to the Boolean false,

o none – means “not known”,

o both HIGH and LOW present – not allowed.

As the last control property does not make sense we have effectively three control
properties.

- Timer is an object with the following “real” properties: Name, Const1 (Timeout value)
and Clock1 (Time base). In the “virtual” state machine specification the Timer is
represented by input control properties like: RESET, STOP, RUN, OVER and
OVERSTOP and output control properties like: Reset, Stop, Start, ResetStart. These
two “real” and “virtual” environments are completely different worlds. The real one
with its Timeout value and Time base is useless and irrelevant for control purposes
(the state machine behaves exactly in the same manner with a 1 sec timeout and a 1
hour timeout). The control properties in the virtual environment are very homogenous
– they are just names describing control features. Those names are completely
independent from the real features.

- Parameter is an object with the following “real” properties: Name, Category, Format,
Unit, Low limit value, High limit value and Init value. In the “virtual” state machine
specification the parameter object is represented by input control properties like:
UNDEF, DEF, CHANGED and INIT (a parameter has no output control properties).
Also in that case there is nothing common between the control properties required by
the “virtual” state machine specification (names) and the “real” numbers, units,
categories, etc.

StateWORKS Studio specification has several possibilities based on used state machine
model and implemented RTDB objects. We cannot discuss them fully in this paper but we
would like mention two specific StateWORKS features.

In general, a control system has a sequential part realized by the state machine and a
combinatorial part that does not require the state machine functionality. In other words, the
combinatorial part would have to be repeated in each state. StateWORKS offers a special
solution for this problem. Instead of repeating combinatorial actions in all states we can write
them in an Always section. In the Reg example we specify there the actions:
Counter_ResetStart, Ofun_CalcLimit, SetPressure_Set if the Required Pressure value
changes.

If we specify a state machine and the implementation system using StateWORKS Studio we
use RTDB objects to define names of control properties. At this time the RTDB has 19 object
types. If we are confronted with a problem that does not correspond to any of RTDB objects
we can define our own object using the OFUN object. The OFUN object represents a software
interface used to add missing functionality to RTDB. In the discussed Reg example the state

1 These are the names used in ´StateWORKS Studio.

StateWORKS in industrial control.doc 7/8

machine has to calculate the range of the ActualPressure value considered as correct. The
range defined by two limits depends on the RequiredPressure value and must be recalculated
any time the RequiredPressure changes. This task is realized by a C-function that is linked
with the run-time system. In defining an OFUN object we specify the name of the function
and its “owner”. This information “binds” the RTDB with the C-function: the RTDB can call
the function and the function can access the objects of its owner.

If you study the details of this example you will see the properties of all objects. Most of them
are obvious and result from the requirements. Note the values for the SetPressure (NO)
object:

- Scale Factor = 2047 / 1000 = 2.047

- Offset = 2048

and for the ActualPressure (NI) object:

- Scale Factor = 1000 / 4095 = 0.2442

Defining the RTDB objects we create any number of objects of a given type according to the
state machine specification. Any specified state machine represents a specific type. We may
create any number of the objects as different incarnations of the same state machine. They
differ by their owned objects.

Run-time system
We can specify the state machine and the run-time system components using StateWORKS
Studio. We can test the specified system using SWLab2, SWMon and SWTerm. How far are
we in this moment away from the implementation? Taking into consideration that SWLab is a
real StateWORKS run-time system, SWLab is the implementation if we can use tcp/ip for
signal transmission. It may be true for Command, Required Pressure, Pressure Ok and
Pressure Error signals which are linked with the operator panel. It may be different for Set
Pressure, Temperature Too High and Actual Pressure signals which are linked with the
control peripheral devices. For them we have to write an IO-Unit which is an interface
between the peripheral drivers and the RTDB. The IO-Unit has to be written in C++ and
StateWORKS documentation provides a good description of class methods which allow
RTDB access.

Conclusions
This paper tries to explain the way StateWORKS is used for implementation of control
system, specifically for industrial control. The principle is to separate the behaviour from the
implementation details. The behaviour is specified using state machine model and the result is
an implementation independent specification. The StateWORKS concept assumes that the
ultimate implementation will not be programmed. Therefore, the state machine specification
must be complete – there will be no chance to add missing control later by coding. The
specification in a form of state transition diagram, state transition tables or XML document is
a perfect base for discussion, exchange and documentation.

The set of object types offered by the RTDB covers typical requirements for input and output
signals. In some cases, where for instance some calculations are required, we shall use the
OFUN object which represents the software interface to the RTDB.

2 The NI and NO objects displayed in SWLab show the inputs (NI) of AD-converters and outputs (NO) of DA-
converters in two forms: as a number and as an analog indicator. The analog indicators are labelled -10…+10
which is of course only one of possible interpretation of analog signals.

StateWORKS in industrial control.doc 8/8

When you install the StateWORKS Studio you will find the entire project in the folder
..\Project\Examples-Web\Regulator. It may be tested using StateWORKS Studio.

