
F. Wagner, P. Wolstenholme August 2005

StateWORKS - specifying control software instead of coding

Why are CASE Tools condemned to fail?
The goal of each software development is to build from an imprecisely defined task an error-free
functioning application. The "usual procedure" has therefore always the same characteristic features:
first the specification is analyzed for some time, in order to get the formal release of programming.
Afterwards a phase of programming marked by innumerable iterations begins. The first
presentations of the results provoke reactions, which lead to more exact definitions of the design
aim. Constant minor changes to the requirements often require major changes to the software. This
happens in particular, if it should turn out that in the context of the already-created architecture new
or changed requirements cannot be realized. This procedure always leads to the incalculability of the
completion date and unreliability of the application: the usual case in software development.

This unsatisfactory situation has caused software manufacturers to revise the way in which software
specifications are handled, in an attempt to improve the development process. The necessary
methods and tools have been known for approximately 30 years under the generic name CASE
Tools and have culminated in UML. CASE Tools propose methods which allow a task be specified
and results to be generated to facilitate coding. Usually graphic editors are offered, with which
beautiful diagrams are drawn. Formal methods, which one obviously needs during the conversion of
verbal descriptions to the diagrams, are touched upon but far too briefly. The CASE tools produce
documents, which contains some drawings and accompanying text. It is better to begin the
programming work with such introductory documents than with unofficial notes on some scraps of
paper.

Even so, many programmers struggle against investing time into such activities. They believe that
they might learn, during the elaboration of a slightly more formal specification, to understand the
application better; however they are afraid that the investment is too high. One can have some
sympathy with this view, although it is clear that in some cases it is only offered as a rationalisation
of deeply-held personal prejudices. Sometimes the true reason for the refusal is that programmers
like coding, which is fun for them. Obviously there is no fun in working on a specification. A
further reason is that the verification and a search for logical errors as well as a consistency test of
such a specification are difficult tasks. The validity of the specification document decreases rapidly
as the coding proceeds. The many changes, which became necessary after starting the programming
phase, flow rarely into the specification, which loses thereby its function as a precise specification
of the software.

In order to improve the usefulness of CASE Tools, one strives to convert the results of the
specification automatically into the final code. This seems to be however an insurmountable task,
contradictory in itself. If we succeeded to develop a specification language, with which one could
describe a task completely, the specification could be converted directly into the machine code.
This means nothing else than that a programming language of a new generation would have been
invented, which would not be comparable with today's object-oriented languages. We are still far
away from this ideal. For the moment code mock-ups are being produced, with which programming
is to begin. In simple cases some finished functions are also generated, which must be merged into
the software somehow. The alleged reduction of programming effort through automatically
generated files, which are to be used as a development basis, causes more problems than assistance.
For example the additional expenditure which must be invested, in order to maintain the files for
Reverse Engineering is annoying. This functions anyway only partly and in the course of the
development the program diverges from the specification.

It should not be forgotten also that a specification method and the associated tools must be learned.
If this investment resembles learning a programming language, the reluctance of the programmers is

to be understood, if they must master two completely different languages in order to do the one task
twice over.

The sad experience of many enterprises showed that all efforts to create support with CASE Tools
during the software development have supplied no convincing results. In special situations, where
one made a large expenditure on CASE Tools, in particular on UML, certain results can be shown.
If however one looks behind the scenes, the alleged results turn out to be some theoretical
formalities, which are signs of (unfulfilled) hopes but do not reveal the reality. In everyday life it is
"business as usual" and the expensive specification tools vegetate on a shelf, in order to arouse a
good impression on an innocent visitor or on the managers who spent the money for them.

The essential reason for the modest results of all CASE Tools lies in the necessity to “specify” for
the second time in a standard programming language the already, laboriously specified software.

Prerequisites for an genuinely executable specification
The solution to the problems described above lies in creating an executable specification which does
not require an intermediate code, which must be changed or completed by hand. As stated above, it
seems impossible nowadays to define such a strong specification language. Hence, another way
must be formulated. The other way must be based on a ready-made run time system which can
implement a specification. The result of the specification is then no longer program code in some
intermediate stage of completion, but rather data, which describe the application. The data are
interpreted by the run time system.

Figure 1 Control and Data flow in the software

A solution available today supplies: a method, specialised development tools and a run time system.
The implementation of the idea is based on the Virtual finite State Machine (VFSM) concept.

Software is a sequence of activities which are triggered by externally and internally generated
events. Therefore one can represent software as two separate data flows as in Figure 1, where the
data flow (activities: computations, data transformation, data transmission, operator interface, etc.)
is managed by the control flow. The control flow represents or directs the behaviour of the
application. The VFSM method uses a finite state machine model of the sequential activities, in
order to define the behaviour. A complete specification of the control flow can be only achieved, if
all control-relevant information is covered. This is solved in VFSM by definition of the control
values for each kind of data. In order to be able to use the control values, a positive logical algebra
was defined. The StateWORKS system is the practical implementation of the VFSM method, i.e.
StateWORKS is both: a development and an execution environment. In this note we do not describe
the method; a reader may find that information in other publications, also on the web site
www.stateworks.com. We show only by an example, how simple the development tools make it to
completely specify an application. With a single state machine only small tasks can be solved.
Practical applications are specified as systems of several, or perhaps very large numbers of, state
machines. The VFSM method offers here a Master-Slave interface between state machines, which
permits to build systems of any size that are however at all times controllable.

Specifying a control problem with StateWORKS
A state machine controls equipment, process, measuring procedure, etc. within an application. The
behaviour of the state machine is defined with the help of a state transition diagram; Figure 2 shows
an example1.

Figure 2 StateWORKS: Representation of a state transition diagram

This representation is understandable and therefore often used, but it conveys only a limited part of
the specification: the states, the state transitions and the state transition conditions. For a complete
state presentation state transition tables are used; an example is shown in Figure 3. Additionally to
the information, which is shown already in the state transition diagram, the table contains the full
description of the state machine's activities: setting output values, starting timers, generating alarms,
etc.

An application needs several state machines. Those state machines function not as separate control
1 The diagrams and table are taken from the book “Modeling Software with Finite State Machines: A Practical

Approach” to be soon published.

units but form a coupled control system. The preferred form of such a system is a hierarchy, as is
shown in the example in Figure 4. The diagram shows a Main state machine, acting as a master and
three Slaves: Pressure1, Pressure2 and Device1 (whereby Pressure1 and Pressure2 are instances of
the same state machine, having common behaviour specifications). Additionally the Diagram
contains units, which define the interface to peripheral devices (DI8:01, DO8:01, NI4:01, NO4:01)
and the application-specific output functions (OfuLimit:01, OfuLimit:02). The output functions are
software interface components that permit to merge application-specific data processing modules
into the StateWORKS run time system. The shown diagrams and tables are produced by
StateWORKS Studio. StateWORKS Studio has editors to specify individual state machines and a
system of state machines too. Beyond that StateWORKS Studio contain a simulator to test the
specified application.

Figure 3 StateWORKS: Representation of a state transition table

In order to arrange testing in an effective and comfortable fashion, various monitors are made
available. The monitors offer all feasible functions:

• Debugging of state machines and all objects involved
• Logging of alarms
• Automation of the test runs by command files

The application is inevitably documented at each instant: all diagrams, tables, comments can be
printed or exported into other documents; a complete XML representation of the specification is
likewise available. These documents are always up-to-date.

And now the most important feature: with the creation of the specification the development is
terminated, if the appropriate I/O interfaces are present. The results in the form of files, which
contain the structure of the system and the behaviour of all state machines in the system, can be

directly used by the StateWORKS run time system.

The StateWORKS run time system is application-independent standard software, which was tested
for years in many different applications and with a variety of operating systems. The still possibly
missing part - the user interface - is always application dependent and must be manufactured for
each application. In order to support and facilitate this task, the StateWORKS run time system has a
TCP/IP interface. A static and/or dynamic library is used, in order to realise communication with the
run time system. This is relatively simply to manage, since the run time system is based on a real
time data base (RTDB), which serves as a TCP/IP server. Clients communicate with the objects of
the data base, whereby communication from view of a client contains reading and writing as well as
receipt of events, which are sent automatically to registered clients.

Figure 4 StateWORKS: Representation of a system of state machines

Conclusions
StateWORKS is thus a system, which realizes the idea of an executable specification. Since it does
not use an intermediate code, the specification must be complete and any changes and removal of
errors (which can only be logical, rather than coding errors) can be done only in the specification.

