
F. Wagner November 2007

Complement control values in the VFSM concept1

Introduction
In the VFSM concept [1] [2] we use control values for expressing input values. A control value is

defined as an input data property which may be relevant for a control. As nearly all input types have
more than two control values we have to invent a specific algebra for formulating logical
expressions for state transitions and input actions. This algebra uses boolean operators AND and
OR but forbids the operator NOT as there is no unique value for a negation of a control value in a
multivalued control environment. This limitation allows us an implementation of the execution
environment based on set theory.

Problem
Many years of experience have shown us that the missing NOT operator is not a serious

limitation. Nevertheless, there are situations which we would like to solve in a better way. Let's take
an example of a SWIP object which supervises a NI value. The SWIP object has the following
control values: OFF, UNKNOWN, LOW, IN and HIGH. If we want to express a condition that
means a negation of the other values we use a workaround. For instance let's assume that the value
IN means TemperatureOk. Then a TemperatureNotOk (that means explicitly NOT IN) condition will
be then expressed as LOW OR HIGH OR OFF OR UNKNOWN (in cases when it does not matter
we could use a simplified expression: LOW OR HIGH). This solution works well for all objects
which have a limited number of control values; in the standard RTDB objects (excluding CMD,
XDA and OFUN of course) there are never more than 6.

This issue becomes a more difficult problem in Master state machines which use states of other
state machines as inputs. As state machines can have many states applying directly the previous
solution becomes not very practicable. Therefore, we have, for a state machine, a possibility of
defining a complex expression, so hiding the long OR expression behind an expressive name.
Hence, trying for instance to use a condition NOT State_Error we define a complex expression as
an OR of all other states. In fact, it is the same solution as for the SWIP shown above but making
the specification “lighter” and easier to read.

The NOT prohibition is not a very severe limitation but anyway we decided to simplify the
specification task by adding negated control values. We call the negated values complement values
in line with the set theory.

Arguments in favour of complement values apply for the VFSM concept implemented as in
StateWORKS where most of the standard objects used have a fixed and limited set of control
values. In coded implementations (see for instance the AT&T approach [3]) the use of complement
values is irrelevant as we are free in defining any control value. Thus, if we need a condition
TemperatureNotOk like in the example above we just define that condition in the coded version. In
StateWORKS we have to use existing values for defining the condition TemperatureNotOk and the
complement value is then useful. The decision whether to define TemperatureNotOk as a
complement of control value IN or to use an expression TemperatureTooLow OR
TemperatureTooHigh OR TemperatureUnknown OR Temperarue SupervisionOff (where
TemperatureTooLow is defined on a control value LOW, TemperatureTooHigh on a control value
HIGH, and so on) is maybe a matter of taste.
1 This version replaces the first one from October 2007

1/4

Having this in mind we conclude that the use of a complement control value in StateWORKS
should be limited to object types with a fixed predefined set of control values. The few types
(CMD, XDA, OFUN) that allow the user to define any value needed do not require the
complement. In StateWORKS editor we may define conditions of complement of control values for
any object type but we should use it carefully.

Solution
In the specification we are going to use two forms of the control value: true and complement. A

negated control value - its complement - is denoted by the prefix ~ and means any other value, for
that object. For instance, for the above discussed SWIP object the ~IN means any other value: OFF,
LOW, HIGH or UNKNOWN. We note in passing that in that case a complement value is always
complete, covering all “other” control values. The complement of a state is especially powerful. For
the example above, the value ~State_Error means that the Slave state machines is in any state
except State_Error.

StateWORKS run-time implementation
This concept makes the implementation of the VFSM Executor more complex. The

implementation details are transparent for the user and therefore maybe not very interesting.
Therefore, we limit our explanation to some basic observations.

An RTDB object inserts its input name into the virtual input. Without the complements the inputs
of all RTDB objects are mutually exclusive. The use of complements has changed this rule: at a
given moment more than one input of a given object may exist in the virtual input. For instance,
let's take again the SWIP object. It has 5 true control values: OFF, LOW, IN, HIGH and
UNKNOWN. Let's assume that we use 3 of them: LOW, IN and ~IN defining on them names:
Too_Low, Ok and Not_Ok. Depending on the SWIP value the virtual input contains then :

SWIP control value virtual input
OFF {Not_Ok}
LOW {Too_Low, Not_Ok}
IN {Ok}
HIGH {Not_Ok}
UNKNOWN {Not_Ok}

The content of a virtual input for the true value OFF might be empty ({}); it is a question of a
definition.

Note some specific situations in the specification:

– Ok & Not_Ok = false

– Ok | Not_Ok = true

corresponding to the rules of the boolean algebra.

Although the theoretical basis is a relatively simple one an implementation of the VFSM
Executor is not that simple. The reason is that a straightforward implementation would require the
use of a set with elements like A and ~A. As the RTDB uses sets of integers the implementation has
to be a bit more sophisticated but that is another story.

2/4

StateWORKS Studio

Figure 1: The Input Name Dictionary with inactive button "~"

The use of complements within a specification is simple. Opening the Input Name Dictionary
dialog window we note one additional button labeled as “~”. This button is used to complement the
control values. If the button is not pushed (as in Figure 1) the values used are true (not
complemented).

Figure 2: The Input Name Dictionary with active button "~"

3/4

Pushing this button (as in Figure 2) it presents the caption “~”and the values used are
complemented. By default the input names generated on complement values receive the name with
a prefix NOT_ (of course we may rename the default value with any string). We may use the button
“~” when adding (button Add) or modifying (button Modify) input names.

The button Create names creates names on all true values if the button “~” is inactive and names
on all complement values if that button is active. Of course, as in the previous Studio version
creation of all names does not cover objects without a defined number of control values, i.e. objects
of type: CMD, XDA and OFUN. The discussion in the section “Problem” suggested anyway that
for these object types an assignment of complemented control values is not recommended and
difficult to justify.

Naming
The naming governs the understandability of the specification. Therefore, we discuss it very

often, stressing the importance of names used. We know also that there is no unique solution: it
depends strongly on designers and their preferences. The use of complement of control value
intensifies the importance of choice of input names. Let's discuss it using examples in Figure 1 or
Figure 2. They show two names defined on complemented values.

The name NOT_TimO_RUN covers all situations except RUN that is: RESET, STOP, OVER and
OVERSTOP. The default name NOT_TimO_RUN “shows” explicitly the meaning. If we rename it
for instance to a name TimO_Stopped this will be misleading as it would suggest that the timer is
halted. Actually, the timer may not run (being in states: RESET, STOP and OVERSTOP) or run
(being in the state OVER): this nuance may be important for understanding the meaning. Maybe the
name TimO_NotRunningOrOVER would be a better choice.

The name Flow_OutOfRange covers all situations except IN that is: LOW, HIGH, UNKNOWN
and OFF. We have decided to use a simple name as the consequences are trivial. In that application
all control values except IN are equivalent and therefore it seems acceptable to “think” that flow is
out of range also in situations when the switchpoint is disabled (being in the state OFF) or signals
that the input signal is not available (being in the state UNKNOWN). Wouldn't it be nitpicking to
invent a name Flow_IsInStateLOWorHIGHorUNKNOWNorOFF? In cases when those situations
must be clearly differentiated we have to use precise conditions defined on true values and built
exact expressions ORing them to get required conditions, for instance Flow_LOW OR Flow_HIGH.

Conclusion
The introduction of the complements is a major extension to the VFSM concept as implemented

in StateWORKS. It simplifies the creation of a specification, especially in Master state machines
which use Slaves' states as input conditions.

As the complement operation compensates to a large extent the creation of complex expressions
for conditions in Master using Slave states we have abandoned that feature.

References
1. Wagner, F. et al., Modeling Software with Finite State Machines – A Practical Approach,
 Auerbach Publications, 2006.

2. Wagner F.: Technical Note: “The Virtual Environment”, April, 2003.

3. Flora-Holmquist, A.R., Morton, E., O'Grady, M.G., Staskauskas, M.G., “The virtual finite state
 design and implementation paradigm”, Bell Labs Technical Journal (1997): 97-113.

4/4

	Complement control values in the VFSM concept1
	Introduction
	Problem
	Solution
	StateWORKS run-time implementation
	StateWORKS Studio
	Naming
	Conclusion
	References

