
F. Wagner July 2008

Using tcp/ip channels as an I/O interface

Tcp/ip channels in the RTDB
RTDB is a tcp/ip server. All attributes of each object in RTDB can be accessed by tcp/ip clients. A
client connects to the RTDB server using two sockets: Request and Event. The Request (R) socket
is used for queering of object attributes. The Event (E) socket delivers object attributes that are
registered as “advise” in RTDB. A client requires the following functionality for establishing and
controlling the communication with the server; it has to be able to:

– Connect to the server

– Disconnect from the server

– Register for events (Advise)

– Terminate events (Unadvise)

– Read data

– Write data

– Receive advised data (events).

The Read/Write data operation is accomplished by using the Request socket (see Fig. 1). A client
Request message is answered with a Reply message containing the value of the required attribute. A
client writes an attribute value into the RTDB by sending the Poke message.

In addition we have also a Security message for sending a password if applicable. The Security
message is just a variant of the Write (Poke) message and does not play any role in I/O
considerations.

If a client wants to have values continuously updated it has to register (advise) for events. It gets
notified of any change of the advised attribute value via the event socket as an advised data
(AdvData). Of course all advised clients get the change. A client registers for events by sending the
AdviseStart message (see Fig. 2) that defines the object attribute to be advised. Any number of
clients may be advised for an attribute. A client terminates the advise registration by sending the
AdviseStop message that defines the object attribute to be unadvised.

Fig. 1. Read and write data

Hence, if any client writes a new attribute value all advised clients get the corresponding change via
their event sockets. Fig. 3 Shows a Poke message that changes an attribute value. In consequence all
clients that are registered for events receive AdvData messages on its event sockets containing the
changed value.

Fig. 2. Event data

Fig. 3. Events generated after Poke

The concept of Raw Data
For the discussed topic only the data attributes (.Dat), of the many attributes normally existing, are
relevant (I/O Handler transfers input/output data). A User Interface is in principle interested in
RTDB data that are transformed into control values determining the (state machine) behavior and
output values generated by (state machine) actions. To use the tcp/ip communication scheme for
I/O purposes we need also true input values that are coming from the controlled devices as well as
true output values delivered to the controlled devices. We call them Raw data and they are
represented by an attribute Iatt_RawData (.Raw). In some cases the Raw data is not even stored in
RTDB and must be generated at the moment if it is needed. For instance, the Data value of the
object NI is stored as a value converted according to scaling and offset properties. Hence, the value
supplied by a client that works as an I/O Handler must be provided in the raw form exactly as in the
I/O Handler. Similarly, the Data value of a NO object does not exist in RTDB: it is a Data value of
the object defined in its property Out Data. For a transfer to the client serving as an I/O Handler it
must be generated as a Raw data.

Having these considerations in mind we use for the I/O communication attributes shown in Table 1.
The table contains only those objects that make sense for I/O Handler implementation.

Table 1: Raw data for tcp/ip communication

Object type Attribute Used as Attribute Property Comment
CMD .PeV Input Read/Write Peripheral value is used as Raw

data
XDA .Val Input Read/Write Value is used as Raw data
XDA .Val Output Read Value is used as Raw data
PAR
DAT

.Dat Input Read/Write Data value is used as Raw data.

DI .Raw Input Write only
DO .Raw Output Read only
NI .Raw Input Write only
NO .Raw Output Read only

The classic I/O signals like inputs represented by DI (digital) and NI (analog) as well as outputs
represented by DO (digital) and NO (analog) have a special Raw data attribute that is used while
transferring the raw data. When objects of type PAR or DAT are used for representing input signals
they do not need any special Raw data attribute; the Data (.Dat) attribute will do because that value
is not transformed in any way and is just stored in the form as received from the I/O Handler. The
same remark applies to the object of type XDA: its Value (.Val) attribute represents the data. For an
object of type CMD we can use its Peripheral value (.PeV) as an (input) raw data.

Note that the true Raw values can be only written for Inputs (DI, NI) or read for outputs (DO, NO).
On the other hand the Raw values for objects CMD, XDA, PAR and DAT can be written and read
independently of their true character (Input or Output) because they do exist in RTDB. Of course
for the XDA object used as an Output writing a value does not make sense and we should only read
its value. Anyhow, the read feature has an auxiliary character because all outputs should be
registered by interested clients to be advised, so as to be continuously updated via their event
socket, thus there is no need for reading them.

Implementation details
The implementation of the sockets is a bit more complex than the principal sequences shown in the
figures above. For instance, a reliable message transfer requires acknowledgment of sent messages.
We do not go into these details here.

The message format used is:
struct r_MessagePack
{
 int nHeader;
 e_MessageType MessageType;
 e_Topic Topic;
 e_ItemAttributes IAtt;
 e_ItemSearchResults MessageInfo;
 char cItemName[NAMESIZE];
 char cItemValue[VALUESIZE];
};
The present implementation limits the length of the object name (including attribute) to 64
characters (NAMESIZE) and the size of the data to 300000 (VALUESIZE) characters. VALUE
SIZE covers the entire package size; thus the effective limit of the data size is about 299914
characters. Of course these limit values can be changed at any time if desired.

Sending and receiving messages is a relatively complex task (preparation of the data records,
conversion between the host to TCP/IP network byte order and especially the implementation of the
thread for event messages). For developer convenience we provide a library tcpipclient.lib that
offers a set of functions to be used when programming a RTDB client. These functions are declared
in the tcpipclient.h file.

The StateWORKS monitors (SWMon and SWQuickPro) are in principle User Interfaces. For test
purposes we have extended the SWQuickPro functionality by reading/writing of Raw data as
appropriate. The extended functionality is available starting from StateWORKS version 7.2.

Conclusion
The primary goal of the server/client model of the RTDB has been communication with a User
Interface. When the tcp/ip communication began to be used for input/output purposes we could
extend the StateWORKS server/client model very easily by completing attributes of corresponding
object by a concept of RawData. The completion of Raw data are required for objects: DI, DO, NI,
NO, the objects CMD, XDA, PAR and DAT possessing per se the raw data values.

The imaginable future extensions of our server/client model for I/O purpose may include a transfer
of larger message packets containing data of many objects. The content of such a packet could be
defined in an I/O Unit. It may make sense for an I/O Handler using a polling method for input data
acquisition.

	Using tcp/ip channels as an I/O interface
	Tcp/ip channels in the RTDB
	The concept of Raw Data
	Implementation details
	Conclusion

