
F. Wagner July 2003

New version of CMD object
(Commands)

State machine Interface
In [1] we discussed the interface between state machines. The StateWORKS design
philosophy recommends the Master – Slave principle as the basic relationship between state
machines, where Masters sends commands to Slaves and use the states of Slaves as inputs.

A command is coded as a number but is given a name to make it more comprehensible. For
instance: 1 means Cmd_Stop, 2 – Cmd_Start, 3 – Cmd Break, 4 – CmdContinue, etc.

CMD object
To serve as an interface between state machines a command must have two aspects: it is an
input for Slave and an output for Master. The StateWORKS data base contains object CMD
with this feature. It is not the only object with that feature, for instance a timer state is used as
an input (mainly OVER) but on the other hand it is an output (start, stop, etc.) for the state
machine which uses it. Similar properties are found in counters or swip. The main difference is
that the CMD object is to be used as an interface between two state machines and the timer
should normally be used by a single state machine for timeout, watchdog or similar time
functions. To express these aspects of the CMD object and to make it more comfortable to
work with, it appears as a CMD-IN object in a Slave state machine (its owner) and as a CMD-
OUT object in a Master state machine (its user).

In principle, the CMD object (CMD-IN) in its owner (Slave state machine) should be used to
define input names used for behavior specification, i.e. it should be visible in the Input Name
Dictionary. On the other hand, the CMD object (CMD-OUT) in its user (Master state machine)
should be used to define output names for action specification, i.e. it should be visible in the
Output Name Dictionary. The StateWORKS implementation also allows the usage of the CMD-
IN in the Output Name Dictionary; the reason for this is explained below.

Command life time
A state machine is triggered by events which cause some actions and / or state transitions. The
event is a change of an input signal. The actions and transitions are specified by conditions
which use input signal values. The input signal values have different life characteristics. Some
signals are more like an event that is they appear and are “consumed” after usage. Other
signals have a static nature, they cannot disappear, and they exist always. For instance, a
digital input if true will not disappear after the value has been used, although it will possibly
change to false at some later time.

CMD

Master

CMD-OUT

CMD-IN

Slave

A command raises difficulties when considering its life time. There are no definite rules which
say when the command is “consumed”. In many cases, we may assume that a command is
valid until it is replaced by another one. Unfortunately, this rule is not always true. Imagine the
situation as in the diagram below. A system is stuck in the state Init and can repeat some
activity going to the state Try. It goes to the state Try on receiving the command Cmd_Try.
Later, it leaves the state Try returning to the state Init if a signal Failure is true or continuing to
some other state if a signal Success is true. In the former case, if the previous command
Cmd_Try is still valid the state machine goes immediately from the state Init to the state Try. It is
a typical example where the command must be in some way consumed if it is to control each
transition from the state Init to the state Try.

The question is - when and how to consume the command.

There is no obvious solution for this dilemma. Let’s discuss a few alternatives:

- To treat the command as a true event, i.e. to consume it after usage. This solution is
unacceptable because in many cases we need to maintain a command during several
state changes. In other words, the command very often requires different treatment in the
same state machine: during some transitions it must be kept until it is replaced by another
value; in other situations it must be consumed immediately after usage. The problem of
“consuming” or “deleting” a command is also not obvious: a command is a number that
always has a value. “Consuming” means that the command gets a value, conventionally
zero, which is not used for definition of input names.

- To replace the command with another command if the present value is considered as
consumed. This solution means that in a design we would always have to implement a true
hand-shaking: the Master sends a command - the command causes something in the
Slave - the Slave signals the effect to the Master – the Master sends another command.
This principle sounds nice but is often too heavy: it leads to excessively complex solutions
to simple problems.

- To delete the input name corresponding to the command value in the virtual environment.
In fact, this solution has been applied in StateWORKS for many years by using the C(lear)
field as a kind of entry action. Of course, it is not an entry action (therefore it uses a
separate field) but just an indication for the Executor (in the run-time system) to remove the
name from the virtual input. Of course, we can use the C(lear) field for removing any
names from the virtual input but effectively, it has been used only for commands. In fact, it
would not be correct to use it for most other signals. Imagine removing a name
corresponding to a digital input: it would be just a fraud because a digital input cannot be
consumed – it has always a value. We have used this solution but we were not happy with
it, as after removing the name from the virtual name the real signal (command) is not
correctly represented in the virtual input. Another consequence of this solution is the
problem of command repetitions. The StateWORKS data base is a real time data base
which generates events if an object changes its value. Removing a command name from
the virtual input does not change the real command. Therefore, the command object has
received a special treatment – it was the only object that generated events while
maintaining the same value.

- To delete the command, or more precisely to set it to a value (0) that is not used for input
name definition. This solution is the best one. It gives the designer the possibility to decide
about the command life period and it no longer requires any special treatment of the

Success

Cmd_Try

Failure

Init Try

command object. The correspondence between the virtual input and the real signals is
guaranteed.

The last solution - deleting the command - has been implemented in the latest version of the
StateWORKS development system and the run-time system. It explains why the CMD-IN now
appears also in the Output Name dictionary: we can define there a (true) output action used for
deleting the command value.

Several command objects for one state machine
Normally, a state machine needs only one command object (CMD-IN). This object is used to
define all commands required for state machine specification. Sometimes, a state machine
requires more command objects. The reason may be a requirement to have a group of
commands for testing that we do not want to mix, for safety reasons, with the operational
commands. Another reason could be the use of a second command as a parameter for the
main command.

Though commands are numbers, they are “known” in the state machine design by names. The
names are defined in the state machine IOD – file as strings used by the run-time system (they
are also defined as enumerations in the state machine H – file for any programming purpose). If
a state machine has more commands, for each additional command a pair of IOD - and H –
files is generated with the command names. The name of the files is created by concatenation
of the state machine name and the command name. The name of the IOD - file (without
extension) should be used as a Type property in the Cmd Properties window.

Example
The state machine discussed above (with Init and Try states) will have the state transition
tables shown below.

The state machine has a CMD object MyCmd and a XDA object Result to control the trials.
The MyCmd object is used by its Master to trigger some activities in this state machine. The
Result object is used for acknowledgement of some actions for instance by a client. Analyzing
the requirement we find out that both signals must be consumed after they have caused the
required transitions. If the state machine receives in the state Init the command Cmd_Try it
goes to the state Try where it does some action, clears the MyCmd and waits for an
acknowledgement. If the acknowledgement is Result_Failure the state machine returns to the
state Idle and the trial will be repeated after receiving again the command Cmd_Try. Note that
the Result signal must be cleared also on entering the state Idle. If we forget to clear either the
MyCmd in the state Try or the Result object in the state Idle their value will stay and cause
false transitions on entering the state next time. This is a typical example where signals must be
consumed immediately after they are used to provoke a transition: they are losing their
meaning at this instant.

If the acknowledgement is Result_Success the state machine goes to the state Continue and
the trials are terminated.

Maybe, you could ask why we should not use values Failure or Success of the MyCmd as an
acknowledgement; thus solving both “consuming” problems: producing Cmd_Failure or
Cmd_Success will replace Cmd_Try in the Try state and Cmd_Try will replace Cmd_Failure in
the Init state. This would be against Master – Slave principle: MyCmd belongs to this state
machine and only one Master should have an access to this object. A Master should never
acknowledge itself the result of the operation. The acknowledgment must come from an
external device.

This example also shows the close similarities between CMD and XDA objects. The fine
differences between them decide which should be used in a given situation.

Init E: Result_Clear

X:

Try Cmd_Try

Try E: SomeAction
MyCmd_Clear

X:

Init Result_Failure

Continue Result_Success

What about XDA ?
The XDA object is similar to the CMD but it was never intended to be used for commands. The
XDA object is a store for a number (as an integer). In fact, this feature is a side effect, as the
primary function of the XDA object is to manage a memory space. This basic XDA feature is
used in Output Functions.

Anyway, sometimes we have used the XDA feature to store a number, replicating the CMD
functions. This could be justified before the CMD-IN got the Clear output value as the XDA
object could be used as input and output in a state machine. Hence, we had no problem to
determine the life time of the XDA value. After introducing the Clear output value for a CMD
object there are no longer any valid reasons to use the XDA object as a CMD object. The XDA
object has some disadvantages in comparison with the CMD object, especially that the XDA
object values cannot be “known” in the RTDB system by names. Thus, we could operate only
with numbers when accessing the object from outside.

In addition to the memory management function mentioned above, the XDA object can be used
for handshaking between the RTDB and IO unit. We may discuss this topic in a separate note.

In the Cmd example the XDA object has been used to acknowledge the result of an action. It is
a typical application for the XDA object: the Result object is not an interface between state
machines but it is an acknowledgement from somewhere else.

Running the example
When you install the StateWORKS Studio you will find the entire project in the folder
..\Project\Examples-Web\CMD-Object. You may run the SWLab with Cmd_Example and
monitor the system using SWMon. To try out the system is not very exciting: using SWMon you

just send a command Cmd_Try and acknowledge the result using the Result signal to see that
it works. Studying the specification in SWEdit is probably as convincing as looking at this trivial
exercise.

Summary
The CMD object is very important for the realization of the interface between state machines.
The introduction of the Clear output is the ultimate solution for proper handling of the life time of
a command value.

References
[1] Technical Note: Hierarchical system of state machines, May 2003,

