VFESMML 1.0

Virtual Finite State Machine Mark-up Language

Date: 04.04.2004
Release: 1.0
Author: Thomas Wagner

Table of Contents

N VI @ 1 16 T I T] N SRR 5
11 VFSM AND ITSINOTATION ...uutiieiitiieeeitiee e eiiee e s sttt e e e etee e e eaeeeesssseeeeaaseeeeanseeeaasseeeaassaeesanseeeeasseeseansesesasens 5
1.2 VIRTUAL ENVIRONMENT 1.ttt eutttesiteeeeetteeeeateeesssseeesassesesassseesassseesansssesanssesssnssesesansesessnssssssnssesssnnsessssnsenes 6
1.3 EVENTS AND SIGNAL LIFE TIME ieiittteeietteeeeitieesstteeeestaeessnseeesssseeesassaessassssessasssessansessssnssesesssssesanssnesannes 7
14 POSITIVE-LOGIC ALGEBRAuttiiiitieeeeeittteeeteeeesstteeeaateeeesasseeesasseeeaassaeesaasseeesassaeasanseeeeaansesesasseeesanseeensnnes 7
15 STATE MACHINE EXECUTION MODEL ...eeeutttieeireeeeiteeeeastreessssseeesssesesasssesssasssssssssssssssssessssssssssasssssesassseenas 8
1.6 SYSTEM OF STATE MACHINESuvtiiiitteieeetteeeeiteeeessteeeeastteessaseeeesssseeasasseeeaassesesansseessnsseessansessssnssnsesnsseeannn 8
17 REAL TIMEDATA BASE (RTDB) ..ottt bbb 9
1.8 DESIGN GOALSOF VIFSIMIMIL ...ttt ettt e et e e et e e e bae e e e eatee e e eaneeaeeneeeaan 10

2 VFSMML FUNDAMENTALS ...ttt ettt ettt e e e et estte e eae e e sateseasessatessnseessbessnseesntessnseesnres 11
2.1 VIESMIML OVERVIEWoviiiitiiieeeitiee e ettt e eetee e e ettt e e ettt e e eeateeeesabeeeeataeeeaassesesasseeasanbeeesaassesesasseeasaseeesannes 11
2.2 VIRTUAL INPUT AND OUTPUT . .uttttiieeeeeieiirteieeeesseeusreeeeaessassastaseeesssasassssesssesssasssssssesesssansssssssssessenssnssneees 11
2.3 STATE MACHINE BEHAVIORutiieiitieieeettee e e ettt e eeetteeeeeteeeeesateeeeasseeesesseeaeasbesesesseeessseeaeantesasasseeesasseeenn 12
2.4 VIESIMIML EXAMPLESooiiiiiie i iieee e ettt e e ettt e s st e e e s tte e e sateeessaseeesansaeeeasseeeessseeesanseeeeessaeesassenasanseeesannes 13

24.1 MICTOWAVE OVENoeiiitieciee ettt ettt e st e e st e e e ae e st b e e easeesabeeeaseesateessseesateesaseesateesaneesseeesnneesares 13
24.2 Smple Master-Save ConfigUIralioN...........cveueeeiierie e sree e ere e sre e eeeae e enes 22
2.5 VESMML SYNTAX AND GRAMMAR......ceteiiittteeiittteeastteeeeaiseeessiseeeaasteeesasssseesasseesssssesesasssseesasssesssnsenesans 27

3 VFSMML MARKUPttt ettt e st et e e st e e st e e sate e sateesaee e sateesaeeesaeeenaeeesseeesnteesnseesares 29

3.1 ELEMENT USAGE GUIDEcciiitttieiiteee ettt e e ettee e s steeeeatae e e esataeessaseeasaseeeesanseeesasneeeeasseeesansaeesanseeesnsseeannn 29
311 SUMMAY OF EIEMENTS. ...ttt e e 29
312 Overview Of SYNtaX a0 USA0Ecoeueueriiieiriiieisier ettt 30

Yo (0] o o SRS 30
00010 [(0] > 1o SR RSSRSN 30
DTS o oo > I USRS 31
(0117 ok e > - o SRR 31
(1 7 ox 0 > 1o SR 31
D T I SRR 31
S 1010 > 1= USSP 31
] 10172t (0] 1 > o SR 33
£ 10T 0 > 1o SR 33
S =0 01> I SRR 33
0] o] = ox o I o SRS 33
(O 11011 I SRS 33
1 S 1= o USSR 34
S (0] 0= 1 = [SRR 34
Sz 1> 1= SRR 35
S = (S N = 1> = o [RSP 35
S I =05 1o > 1o TSR 36
S 1Y 01> = o PRSPPSO 36
Y= 0T > I SR 36
LY Y D - o S SR 36
DY 01 0| B I TSRS 36
3.13 1S 00 a1 A 11 1 oLV (O 37
BIWEYS ...ttt h b e b h e b E £ R h e Rt R e e R R e Rt R e e R R et bR et Rt b et n b e 37
811 X SO SO STV ROR PP 37
SOUI G .. tttteieeeee ettt eeeeee e e uaere et eeeeeaaaassaeeeaaeeaaaasseseeaaaesaasssseeeaaesaasnsseeseaasaasnssaseaaaseasssseseeaaaeesaasnnseneeanssasnnnrns 37
13 O[T U OO 37
3.14 o == Vo TP TPRR 37

3.2 LINKED INFORMATIONutttiiiiuteteiiteeeeateesesiuseeessuseeesaasseesaassasesssseeasanssesssansssesssssessnssssssansesesssssessnseeenns 37

APPENDIX A PREDEFINED DEFAULT VEFSM ..ottt ettt sttt 41
A.01 NI N (I PR 42
A.02 (000 Y 1Y 1Y N (/1 5) R 44
A.03 L0 TN = (N N 45
A.04 DATA (DAT) ettt b bbbt bbb bt b e e bt b e b e et b e e e bt b et e b et e st b n e 46

A.05 DIGITAL INPUT (D) 1.ttt bbbttt st e e 48

A.06 DIGITAL OUTPUT (DO) ..ttt sttt b et b bbbt b bbbt eb e n e 49
A.07 LV =N el @ U N = (= N N R 50
A.08 NUMERIC INPUT (N1) 1ttt ettt et e st e et e teeeesneesneesneenseenseeneeensannansseensenn 50
A.09 N TE Y= Tl U = B (N[) SRS 51
A.10 (O U B = U [on T N (@ U S 52
A.ll L Ny = () S S 53
A.12 SR N (S I R 54
A.13 SWITCH POINT (SWIP) ..ttt sttt sttt st b et b e et b et b e et b e et st nn e e 56
A.l4 TABLE (TAB) ettt bbbt b bbbt eb e b et eb e s R et eb e s e et ebesb e e ebenbeneeneas 58
A.15 TIMER (1) ettt etttk b et bbbt bt b b et eb e b e e eb e e b et eb e s b e e ebenbeneebenbeneeneas 58
A.16 UP-DOWN COUNTER (UDC) ...ttt sttt bbbttt 59
A.17 ANY DATA (XDA) ettt b bbbt et b b h bt et b e st et b b e e e bt st e e e b b e e enis 59
APPENDIX B LU I R SSRR 61
APPENDIX C PARSING VESMML ..ottt st st eb et nn s 62
A.01 DOCTY PE DECLARATION FORVIFSMML ...ttt 62
A.02 USE OF VFSMML WITHOUT A DT D ..ottt 62
A.03 THEVESMML DTD ..ttt et b e e bt st e ss et bbb e e st ene e e e e 62
APPENDIX D REFERENCES........o ottt sttt st bbbt ae e et sn b b nne s 63

1

Introduction

1.1 VFSM and its Notation

A finite state machine (FSM), sometimes called a finite automaton, is a system
whose condition depends not just on external stimuli, but on the history of those
stimuli. VFSM is amethod for specifying FSM as “Platform Independent Models”
in such complete detail that they may be executed directly in arun-time system
without requiring further transformation.

A very simple FSM example is a keyboard, which might be in the normal, initial
state, or the caps-lock state, depending on the number of times the Caps Lock key has
been pressed. Although programmers are often introduced to FSMs in the context of
parsing input text for compilers, the concept is very much more general, and applies
to most “reactive systems’ in which internal processes are governed or influenced by
external events. In such systemsthe FSM does not merely run through a sequence,
producing an end result, but it normally operates throughout the period when the
system is able to function.

The academic definition of an FSM isa“quintuple” A =<%, S, S, 6, F> whereX is
an alphabet, Sisafinite, non-empty set of states, Spisaset of initial states, 6:S x
>—p(s) isatransition function, and F is the set of accepting states (perhaps empty).
Thisis perhaps not too helpful to the practitioner, but quite an amount of theory can
be found in the various text-books if he is mathematically inclined. A key point is,
however, the input alphabet X , which defines the stimuli to which the FSM will
react.

A weak point of the above definition is the absence of actions. One might think that
the task of the state machine isto change states until it reaches an end state, and there
isaclass of state machines called “deterministic” which need to do this (for instance,
parsing text and reporting when specific sequences are detected). The true task of
state machine is to trigger actions according to situation defined by the present state
and stimuli.

FSMs are normally described in a diagrammatic form, using a circle to represent
each state, and lines with arrow heads to represent transitions between the various
states. The addition of details explaining what will provoke any transition is often
difficult to achieve, and atext description of the FSM is then needed.

Asthe FSM functions, changing state from time to time, it will provoke actionsin
other parts of the system, as required for the specific project. The actions can be
performed by entering a state (entry actions), leaving the state (exit actions) or they
can be triggered by an input (input actions) irrespectively of the state transition. Input
actions and entry actions are the basic actions used by state machine specification. A
state machine which uses only entry actionsis called a Moore model. A state
machine which uses only input actionsis called a Mealy model. In practice, models
which combine all actions: entry, exit and input are preferable solutions of state
machines.

An FSM will often seem to be very easy to design, and will require a modest number
of states - say about a dozen - to perform its task. Then, when the designer considers
what might go wrong in various ways with the external system, heis forced to add
many states to handle these errors, and the whole FSM becomes very large and

difficult to deal with. Thereisasolution: split the FSM into several different FSMs
which are linked together, and where each one deals with a part of the problem. In
very large systems, one will find that many of the error-handling processes are
amost identical, and this can save timein the devel opment phase by permitting re-
use of some FSM designs.

A definition of a standard notation for state machines is mainly determined by: the
variety of input / output signals and a system of state machines.

This document describes a way in which the FSM concept can be applied in
software, and by which FSM designs can be expressed in full detail in XML format.
A detailed description about FSM and VFSM can be found at [1].

1.2 Virtual environment
Input actions and transitions are controlled by expressions using boolean conditions
and they are due if the expressions are true, as for instance:

if ((Tenperature > MAX TEMPERATURE) && (Tinmer == Is_Running) ||
Door _C osed)

In the above control expression using ani f control statement there are 3 different
input values. Temperature which is afloating-point number, Timer which is a state
(Running) of atimer and Door which isadigital value (On, Off). In most cases, these
signals cannot be used in their original form as variables in a boolean equation
(except Door which is a boolean value); instead their control-relevant (boolean)
values are cal culated using comparison, equal, or other operators. In other words, the
boolean condition must be cal cul ated.

The concept which makes it possible to disregard such details when designing FSMs
isthat of the “virtual environment” as described below.

We introduce input namesto “describe’ the control values of the input values.

Instead of calculating the control values of the input values we assume that the
boolean conditions are specified using the names. Of course, “somewhere’ the names
have to be continuously updated (cal culated) representing always the true situation of
the inputs. The input names create a special environment where all input conditions
are of the same type (just names). We cdll this environment virtual to underline the
fact that we use there not real signals but only a representation of the control feature
of the signals.

Aswill be made clear later, the several possible control values of one physical input
can be likened to “states” of a FSM embodying the control-relevant behavior of that
input. This concept is developed further, in terms of “pre-defined VFSM” which
describe inputs and also outputsin VFSMML.

The control values of all input signals define avirtual input. The virtual input
represents complete information about the inputs influencing the state machine
behavior.

Similarly, we introduce output names to “describe” actions to be done as aresult of a
state transition or input condition. The true actions are also of severa natures, as for
instance: switch on the power, set avoltage to some value, send a message, start a
timer, etc. Using output names to describe actions we define again an environment of

VFSMML Fundamentals

uniform control actions that represent only the essence of the action without their
implementation specifics. Of course, the output names must be “somewhere’
eventually transformed to true output actions. The output names are another part of
the virtual environment.

1.3 Events and signal life time

State machines are triggered by events. The events are changes of input signals.
Some of the signal changes are singular events which can be “forgotten”; we may say
they are consumed by triggering the state machine. Other signals cannot be forgotten
—they just exist until replaced by another value, for instance the temperature has
always some value — it changes only from time to time. The partition between true
events and signals that are always present is definite. Several values are neither true
events nor always present signals; they just live for some time. For instance, the life
time of acommand or timeout is not well defined: sometimes these are consumed
immediately, sometimes we use them until they are replaced by other values and
sometimes they have to be “forgotten” by force.

1.4 Positive-logic algebra

The introduction of virtual environment consisting of input and output names gives
us a chance to express logical conditions using only boolean equations. The only
difficulty arises from the fact that as a rule atrue control input has more than two
control values. The only input that corresponds to Boolean values: true and false
could be adigital input represented normally by two values: on and off. Other inputs
have several control features:

— aTemperature may be for instance: ok, too_high, very_high, too_low,
unknown,

— aTimer may be for instance: running, over, stopped,

— aCommand may be for instance: start, stop, continue, break,

— aParameter may be for instance: initialized, changed, undefined, defined.
Note that in the examples we say “may be” as there are no absolute definitions of the
control values - they are application dependent. For instance, in one application
temperature: ok and not_ok are sufficient; in another application we could need more
detailed knowledge about the temperature.

Note also that this naming convention allows full description of signal features, for
instance the digital input said above to be a boolean oneisin fact a 3-valued signal:
true, false and unknown.

In all cases where an input has more than two control values the usage of the NOT
operator would be ambiguous, for instance, what would mean a negation of
temperature = ok?

Thus, we use alimited Boolean algebra where names are treated as boolean values
but only AND and OR operators are alowed, and of course parentheses..

The expression

f ((Tenperature > MAX_TEMPERATURE) && (Timer == |s_Running) ||
Door _C osed)

will be than expressed for instance as:

Tenperature_very_high & Timer_running | Door_cl osed

1.5 State machine execution model
Definition of actions suggests already that for any application severa state machines
do exist describing exactly the same control behavior. Another factor influencing the
state machine is the execution model. The execution of entry and exit actions is clear
but the execution of input actions must be defined. The same problem exists with
multiple state transitions triggered by a single event. The following state machine
execution model is used:

Vrtual Input

» Wait
for Input

=F=T1 3

Input Acion
ranafion
Condition 7 Eit Action

Eem cute

En by Achicn hll—| Charnge Gtate

Ere cuite

Figure 1: State machine execution model

A change of virtual input triggers the execution. The conditions of all input actions
are tested and the input actions whose conditions are true are performed. Then, the
transition conditions are tested. This processis prioritized and the first found true
condition causes a transition to the new state in the following sequence: the exit
action is performed, the transition is done and the entry action in the new stateis
carried out. Then, again, the transition conditions in the new state are tested. If atrue
condition is found, another ‘exit action — transition — entry action’ sequence is done.
This processis continued until there are no more transitions due and the state
machine waits for another change of the virtual input.

1.6 System of state machines
Any non-trivial application requires a complex behavioral model — a single state
machine will be too large, i.e. to complex and difficult to handle. The solution isto
partition the complex model into several smaller state machines which are easier to
define and handle. There are two overlapping topics to be solved by a system of state
machines. the communication among state machines and the overall structure of the
system.

Intuitively, it seems to be obvious that a system of state machines where each state
machine may exchange some information with any other state machine will be very
difficult to control, specify and maintain. On the other hand, the variety of

application tasks requires certain flexibility. The VFSM approach suggests - but does
not impose - a hierarchical structure with master(s) in higher control levels and slaves
in lower levels. The communication among state machinesis defined according to
this hierarchical structure: a master sends commands to slaves and uses the slaves
states as control signals. The following example of a VFSM system of state machines

VFSMML Fundamentals

demonstrates this concept, where for instance the Transport state machineisasave
of the master Main and a master of the slaves MotorX and MotorY .

Main
Cm Cm
State State
Transport Measure
tate State
MotorX MotorY

Figure 2: Master -Slave concept

1.7 Real time data base (RTDB)
The input / output signals are of different types. They carry information like: data,
units, scaling factors, etc. In addition they have control features. For instance:

A Temperature (actually a number representing sensor voltage) is
characterized by avalue, scaling factor, unit and it has a control value, e.g.:
HIGH, OK, LOW.

A Timer is characterized by atimeout value, clock base, running time and it
has a control value, e.g. OVER, RUNNING, RESET, AND STOPPED. In
addition, it may be started, stopped or reset.

A Command isanumber (integer). It may be an input signal (control value) of
a state machine or it may be an output signal for another state machine.

A Parameter is characterized by avalue, initial value, unit, low limit, high
limit, category and it has a control value, e.g. UNDEFINED, DEFINED,
INIT, CHANGED.

These examples demonstrate that it is possible to define a number of known and

often used objects which have some standard properties. These objects can be used as
abase of areal time data base which takes care of input / output signal management
storing them and filtering the control value from their value. This arrangement can be
used to define a system of automatic creation and actualization of control values.
Such a data base must of course provide a software interface to expand the object
types and to program alink to the true input / output signals and to data processing
software.

1.8 Design Goals of VFSMML
VFSMML specifies a XML notation for state machines. The main obstacles are the
variety of input / output signals. To standardize the input / output signals we use the
VFSM concept which defines the virtual environment and the positive-logic agebra
for condition expressions. In addition, we assume the usage of the VFSM execution
model. Other elements of the VFSM concept: hierarchical structure and Master-Slave
interface are suggested elements but they are not enforced by the standard.

The standard uses the concept of RTDB defining attributes (properties) of several
objects. This part of the standard is open and can be expanded by new object
definitions if desired.

The Figure 3 below shows how VFSMML fitsinto the XML concept. All details
about the XML definition can befound in [2].

MathML SMIL VFESMML

XML

Figure3: VFSMML within the XML concept

! For those readers not too familiar with XML we wish to point out that, although XML text is readable by
humans, it is rather cumbersome. In practice, an XML document is commonly read with the aid of a style sheet,
which drastically alters the appearance, and in many cases removes the XML tags. Such a style sheet, asan XLS
file, isfor instance available for viewing VFSMML “ StateWORKS' files. The full XML format is used in the
examples below, so asto explain the structure of VFSMML documents.

10

2 VFSMML Fundamentals
2.1 VFSMML Overview

This chapter introduces the basic ideas and describes the overall design of VFSMML.
The second section presents a number of motivating examples, to give the reader
something concrete to refer to while reading subsequent chapters of the VFSMML
specification. The final section describes basic features of the VFSMML syntax and
grammar, which apply to all VFSMML mark-up.

The VFSMML mark-up consists of about 23 elements and introduces a small set of
attributes.

2.2 Virtual input and output

The virtual input are values (names) which are used in the state machine specification
to describe behavior conditions, i.e. input actions or transitions. Because the virtual
input names describe the condition of each real input, they can be considered as
being the names of states of VFSM which represent those inputs, for the purposes of
use at higher levels. The virtual outputs are values (names) which are set by the state
machine in certain situations, i.e. when entering a state, exiting a state or as input
actions.

For instance to represent a simple on/off switch the following VFSM can be defined™:

<VFS\W>
<Type>swi t ch</ Type>
<hj ect >
<Nanme>swi t ch1</ Nanme>
</ Obj ect >
<l O d>
<| nput >
<Nane>hi gh</ Nane>
<Val ue>1</ Nanme>
</l nput >
<| nput >
<Nane>| ow</ Nane>
<Val ue>0</ Nane>
</ | nput >
</1Q d>
<St at e>
<Nane>Hl GH</ Nane>
</ St at e>
<St at e>
<Nanme>LOW/ Nane>
</ St at e>
</ VFSM>

The names “high” and “low” represent the virtual input of the switch VFSM. The
state names “HIGH” and “LOW” can be used as its virtual outpuit.

One can define arange of state machines which are commonly used, to represent
such items as timers, digital input, digital output etc. Those state machines don’t need
to be defined in a VFSMML message, as their virtual inputs and outputs are well
known on the target system. VFSMML defines a set of such known (predefined)

! This definition is not complete, e.g. it does not contain the behaviour description.

11

VFSM. See Appendix A for more details. To use a predefined VFSM, only its object
name definition is required:

<VFSM t ype="predefi ned” >
<Type>Dl </ Type>
<(bj ect >
<Name>swi t chl</ Nanme>

</ Obj ect >
</ f VFSM>

Figure 4: Digital Input (DI) object state machine

low

The“DI” VFSM has exactly the same virtual input and output as the previously
defined “ switch”.

2.3 State machine behavior
The behavior of a state machine is given by the description of its states. Each state
can set output values (names) based on certain conditions. The conditions are logical
expressions’ created out of the input values (names). Entering or exiting a state can
also be used as akind of condition to set an output value. For each state any
condition based transitions can also be specified. To support logical expressionsto
build conditions, MathML syntax is used.

For instance to specify that the following state machine shall change to state “ starting
engine” when the air conditioning is running and the start switch ison, the
description below can be used:

<VFSW>
<Type>Engi ne</ Type>
<St at e>
<Transition>
<Condi ti on>
<appl y>
</ and>
<ci >ai rcond_runni ng</ ci >
<ci >swi t ch_on</ci >
</ appl y>
</ Condi ti on>
<St at eNanme>St art i ngEngi ne</ St at eNane>
</ Transition>
</ St at e>
</ VFSM>

! See also section 1.4 Positive-logic algebra

12

VFSMML Fundamentals

The input names used for conditions and output names used for actions are based on
objects defined for the given VFSM. For instance the input name " switch_on” could
be created using the definition given in previous chapter 2.2:

<VFSM>
<Type>Engi ne</ Type>
<bj ect >
<Nane>Engi nel</ Name>
<Pr operty>
<Nane>swi t ch</ Name>
<Val ue>sw t chl</ Val ue>
</ Property>
</ Qbj ect >
<I G d>
<Name>swi t ch</ Name>
<I nput >
<Nane>swi t ch_on</ Name>
<Val ue>hi gh</ Val ue>
</ | nput >
</10 d>
</ VFSM>

2.4 VFSMML Examples
2.4.1 Microwave Oven

Below a simple example of a microwave oven control is presented. The requirements
are as following:

The oven hasa‘Run’ push button to start (apply the power) and atimer that
determines the cooking length. Cooking can be interrupted at any time by opening
the oven door. After closing the door the cooking is continued. Cooking is terminated
when the timer elapses. When the cooking isin progress and aso when the door is
opened a lamp inside the oven is switched on, otherwise when the door is closed the
lamp is switched off.

The control system has the following inputs:

Run push button - when activated starts cooking,

Timer - while this runs keep on cooking,

Door sensor - can be true (door closed) or false (door open).
And the following outputs:

Power - can be true (power on) or false (power off),
Lamp - can be true (lamp on) or false (lamp off).

The knobs to set the power and timeout values are irrelevant for the control state
machine. The behavior of the microwave oven control is determined by the Run push
button, Timer and Door sensor.

For this specification the following state transition diagram can be designed:

Run & Swip_TimeoutNotZero

The table below shows the set of objects given for the microwave oven specification.
Based on those objects, a dictionary of input and output names can be defined (see

Door_Open Timeout

5)
QookingGompleted

aso 2.2).

Object Name Object Type Description

Timer TI A timer; While this timer runs, keep on cooking

Di_Door DI A digital input (high/low); The sensor which shows if the door is
opened or closed

Di_Run DI A digital input (high/low); The push button to activate the
cooking

Do Lamp DO The lamp inside the oven

Do_Power DO A digital output (high/low); The power button

Swip_Timeout SWIP Helping object to support the timer

Table 1: Microwave Oven - Object Name Dictionary

Input Name Input Value Object Name
alwaysl

Timeout Over Timer
Door_Closed Low Di_Door
Door_Open High Di_Door

Run High Di_Run

Stop Low Di_Run
TimeoutNotZero In Swip_Timeout
Table 2: Microwave Oven - Input Name Dictionary

Output Name Output Value Object Name
Timer_Reset Reset Timer
Timer_Start Start Timer
Timer_Stop Stop Timer
LampOff Low Do Lamp
LampOn High Do Lamp

! This name (=condition) exists always

14

4
CookinglInterr upted

E: entry action defined
I: input action defined

VFSMML Fundamentals

PowerOff Low Do _Power
PowerOn High Do_Power
Swip_Timeout_On On Swip_Timeout

Table 3: Microwave Oven - Output Name Dictionary

Besides the transition conditions as shown in the state transition diagram above, an

output table is given to completely define the FSM™:

State Condition Output Description
Init The VFSM dtarts | - In the initialization phase no
here actions are required
Idle Entering the state | Swip_Timeout_On The swip object hasto be
(entry action) activated
Door_Closed LampOff
Door_Open LampOn
Cooking Entering the state | LampOn Any time we enter this state,
(entry action) PowerOn the timer is started but not
Timer_Start reset
Cookingl nterrupted Entering the state | PowerOff Any time we enter this state,
(entry action) Timer_Stop the timer is stoped but not
reset
CookingCompleted Entering the state | LampOff The timer isreset only when
(entry action) PowerOff the cooking is completed
Timer_Reset
Door_Open LampOn

Table 4: Microwave Oven - Output Conditions

The mark-up representation of the microwave oven is given below:

<?xm version="1.0" ?>
<?xm -styl esheet href="vfsm .xsl" type="text/xsl"?>
<I DOCTYPE vfsmm SYSTEM "vfsnm .dtd" >
<vfsmm project="true">
<Name>MADven</ Name>
<VFSM t ype="predefi ned" >
<Type>TI </ Type>
<(bj ect >
<Nanme>MW Ti : Cooki ngTi nme</ Nanme>
<Pr operty>
<Nane>Const </ Nane>
<Val ue>MN Ni : Cooki ngTi me</ Val ue>
</ Property>
<Pr operty>
<Nanme>Cl ock</ Nane>
<Val ue>sec</ Val ue>
</ Property>
</ Qbj ect >
</ VFSM>

<VFSM t ype="predefi ned">
<Type>Dl </ Type>

<(bj ect >
<Name>MW Di : Door </ Name>
</ Obj ect >

! Actually, there is no standard notation for complete specification of s state machine behavior. For instance
StateWORK S uses a special transition table for this purpose.

<(bj ect >
<Nanme>MW Di : Run</ Nane>
</ Obj ect >
</ VFSM>

<VFSM t ype="pr edefi ned" >
<Type>DO</ Type>

<bj ect >
<Nane>MW Do: Lanp</ Nane>
</ Obj ect >
<(bj ect >
<Name>MW Do: Power </ Name>
</ Obj ect >
</ VFSM>

<VFSM t ype="pr edefi ned" >
<Type>Nl </ Type>
<bj ect >
<Nanme>MA Ni : Cooki ngTi nme</ Name>
<Pr operty>
<Nane>For mat </ Nanme>
<Val ue>i nt </ Val ue>
</ Property>
<Property>
<Nane>Uni t </ Nane>
<Val ue>sec</ Val ue>
</ Property>
<Pr operty>
<Nane>Scal eMode</ Nanme>
<Val ue>Li n</ Val ue>
</ Property>
<Property>
<Nane>Scal eFact or </ Nanme>
<Val ue>1</ Val ue>
</ Property>
<Pr operty>
<Nanme>Cf f set </ Nanme>
<Val ue>0</ Val ue>
</ Property>
<Pr operty>
<Nanme>Thr eshol d</ Nane>
<Val ue>0</ Val ue>
</ Property>
</ Obj ect >
</ VFSM>

<VFSM t ype="pr edefi ned" >
<Type>SW P</ Type>
<bj ect >
<Nanme>MN Swi p: Ti neout </ Name>
<Pr operty>
<Nane>| nput </ Nane>
<Val ue>MN\ Ni : Cooki ngTi ne</ Val ue>
</ Property>
<Property>
<Nanme>Li m t Low</ Nanme>
<Val ue>1</ Val ue>
</ Property>
<Pr operty>
<Nane>Li m t H gh</ Name>
<Val ue>10000</ Val ue>
</ Property>

16

VFSMML Fundamentals

</ Qbj ect >
</ VFSM>

<VFSM t ype="predefi ned" >
<Type>PAR</ Type>
<Cbj ect >
<Nane>MAN Par : Cooki ngTi ne</ Name>
<Pr operty>
<Nane>Cat egor y</ Nane>
<Val ue>PP</ Val ue>
</ Property>
<Pr operty>
<Nane>For mat </ Name>
<Val ue>i nt </ Val ue>
</ Property>
<Pr operty>
<Nane>Uni t </ Nane>
<Val ue>sec</ Val ue>
</ Property>
<Pr operty>
<Nane>Li m t Low</ Nane>
<Val ue>0</ Val ue>
</ Property>
<Property>
<Nane>Li m t H gh</ Name>
<Val ue>0</ Val ue>
</ Property>
<Pr operty>
<Nane>I ni t Val ue</ Nane>
<Val ue>0</ Val ue>
</ Property>
</ Qbj ect >
</ VFSM>

<VFSM t ype="vfsni >
<Type>MNOven</ Type>
<Pr ef i x>MEA</ Prefi x>
<bj ect >
<Nanme>MA%/ Nane>
<Pr operty>
<Narme>M Cnd</ Nane>
<Val ue></ Val ue>
</ Property>
<Property>
<Nane>Ti mer </ Nane>
<Val ue>MN Ti : Cooki ngTi me</ Val ue>
</ Property>
<Pr operty>
<Nane>Di _Door </ Nane>
<Val ue>MN Di : Door </ Val ue>
</ Property>
<Property>
<Nanme>Di _Run</ Name>
<Val ue>MN Di : Run</ Val ue>
</ Property>
<Pr operty>
<Nanme>Do_Lanp</ Nane>
<Val ue>MW\ Do: Lanp</ Val ue>
</ Property>
<Pr operty>
<Nane>Do_Power </ Nanme>
<Val ue>MN Do: Power </ Val ue>
</ Property>

<Pr operty>
<Nanme>Swi p_Ti meout </ Nane>
<Val ue>MN Swi p: Ti meout </ Val ue>
</ Property>
</ Obj ect >

<I G d>
<Nane>My Cnd</ Nanme>
<Type>CMD- | N</ Type>
</1Q d>
<I G d>
<Name>Ti mer </ Nane>
<Type>TI </ Type>
<I nput >
<Nane>Ti meout </ Nane>
<Val ue>OVER</ Val ue>
</ | nput >
<Qut put >
<Nane>Ti mer _Reset </ Nanme>
<Val ue>Reset </ Val ue>
</ Cut put >
<Cut put >
<Nane>Ti mer _St ar t </ Nanme>
<Val ue>St art </ Val ue>
</ Qut put >
<Cut put >
<Nane>Ti mer _St op</ Nane>
<Val ue>St op</ Val ue>
</ Qut put >
</1Q d>
<I G d>
<Nane>Di _Door </ Nane>
<Type>DI </ Type>
<| nput >
<Nane>Door _Cl osed</ Nanme>
<Val ue>LON/ Val ue>
</ | nput >
<| nput >
<Nane>Door _Open</ Name>
<Val ue>Hl G/ Val ue>
</ | nput >
</1G d>
<I G d>
<Name>Di _Run</ Name>
<Type>DI </ Type>
<l nput >
<Nanme>Di _Run</ Nanme>
<Val ue>H G/ Val ue>
</l nput >
<I nput >
<Name>Di _St op</ Name>
<Val ue>LON/ Val ue>
</l nput >
</1Q d>
<I G d>
<Name>Do_Lanp</ Name>
<Type>DO</ Type>
<Qut put >
<Nane>Do_LanpOf f </ Nane>
<Val ue>Lowx/ Val ue>
</ Cut put >
<Cut put >

18

VFSMML Fundamentals

<Nanme>Do_LanpOn</ Nane>
<Val ue>Hi gh</ Val ue>

</ Qut put >
</1Q d>
<I G d>
<Nane>Do_Power </ Name>
<Type>DO</ Type>
<Qut put >

<Nane>Do_Power O f </ Name>
<Val ue>Low</ Val ue>

</ Qut put >

<Qut put >
<Nane>Do_Power On</ Nane>
<Val ue>Hi gh</ Val ue>

</ Qut put >
</1G d>
<I G d>
<Nane>Swi p_Ti neout </ Nane>
<Type>SW P</ Type>
<| nput >

<Narme>Swi p_Ti meout Not Zer o</ Nanme>
<Val ue>| N</ Val ue>

</l nput >

<Qut put >
<Nane>Swi p_Ti neout _On</ Nanme>
<Val ue>On</ Val ue>

</ Cut put >

</1Q d>

<St at e>

<Description>Usual |y, the state machi ne goes
directly to its ldle state.</Description>
<Nane>| ni t </ Nane>
<Transition>
<Condi ti on>
<ci >al ways</ ci >
</ Condi ti on>
<St at eNanme>| dl e</ St at eNane>
</ Transition>
</ St at e>
<St at e>

<Description>Entering the state the state machi ne
switches off the power and stops the tiner. The cooking
conti nues when the door is closed.</Description>
<Nane>Cooki ngl nt er r upt ed</ Nane>
<EntryActi on>Do_Power O f </ Ent r yAct i on>
<EntryActi on>Ti ner_St op</ EntryActi on>
<Transition>
<Condi ti on>
<ci >Door _Cl osed</ ci >
</ Condi ti on>
<St at eNanme>Cooki ng</ St at eNane>
</ Transition>
</ St at e>
<St at e>

<Description> Entering the state the state nachine
switches on the |lanp and applies the power. In addition,

it starts the tinmer which tineout determ nes the cooking
time.

The cooking can be interrupted at any tine by
openi ng the door. </ Description>
<Nane>Cooki ng</ Name>

<EntryAction>Do_LanpOn</ EntryActi on>
<EntryActi on>Do_Power On</ Entr yAct i on>
<EntryAction>Ti mer_Start</EntryAction>
<Transition>
<Condi ti on>
<ci >Door _Open</ ci >
</ Condi ti on>
<St at eNanme>Cooki ngl nt er r upt ed</ St at eNanme>
</ Transition>
<Transition>
<Condi ti on>
<ci >Ti meout </ ci >
</ Condi ti on>
<St at eNanme>Cooki ngConpl et ed</ St at eNane>
</ Transition>
</ St at e>
<St at e>
<Description> Entering the state the Run signal is
cl eared. Opening and closing the door switches the [amp
on and off. If the Run signal beconmes active and the
Ti meout value is not zero the state machine goes to the
stat e Cooki ng. </ Descri pti on>
<Name>| dl e</ Nane>
<EntryAction>Swi p_Ti neout _On</ EntryActi on>
<l nput Acti on>
<Condi ti on>
<ci >Door _Cl osed</ci >
</ Condi ti on>
<Act i on>Do_LampOf f </ Acti on>
</ I nput Acti on>
<l nput Act i on>
<Condi ti on>
<ci >Door _QOpen</ ci >
</ Condi ti on>
<Act i on>Do_LanmpOn</ Acti on>
</ I nput Acti on>
<Transition>
<Condi ti on>
<appl y>
<and/ >
<ci >Di _Run</ci >
<ci >Swi p_Ti meout Not Zer o</ ci >
</ appl y>
</ Condi ti on>
<St at eNanme>Cooki ng</ St at eNanme>
</ Transition>
</ St at e>
<St at e>
<Description>Entering the state the state nachi ne
switches off the lanp and the power. In addition, it
stops the timer. Opening the door switches the |anp on
and the state machine returns to the Idle
state. </ Description>
<Nane>Cooki ngConpl et ed</ Nane>
<EntryActi on>Do_LanpOf f </ EntryActi on>
<EntryActi on>Do_Power O f </ Ent r yAct i on>
<EntryActi on>Ti ner _Reset </ EntryActi on>
<l nput Acti on>
<Condi ti on>
<ci >Door _QOpen</ ci >
</ Condi ti on>
<Act i on>Do_LanpOn</ Acti on>

20

VFSMML Fundamentals

</ I nput Acti on>
<Transition>
<Condi ti on>
<ci >Door _QOpen</ ci >
</ Condi ti on>
<St at eNanme>| dl e</ St at eNane>
</ Transition>
</ St at e>
</ VFSM>

<VFSM type="unit">
<Type>DI 16P</ Type>
<Prefi x>DI 1</ Prefi x>
<bj ect >
<Nanme>MA DI 16P</ Nanme>
<Pr operty>
<Name>ConmmPor t </ Nane>
<Val ue></ Val ue>
</ Property>
<Pr operty>
<Nane>PhysAddr </ Nane>
<Val ue>1</ Val ue>
</ Property>
<Pr operty>
<Nane>Di 0</ Name>
<Val ue>MN Di : Door </ Val ue>
</ Property>
<Pr operty>
<Nane>Di 1</ Name>
<Val ue>MN Di : Run</ Val ue>
</ Property>
</ Qbj ect >

<l d>
<Name>Di 0</ Nane>
<Type>Dl </ Type>
</I1GOd>
<IQd>
<Nane>Di 1</ Nane>
<Type>DI </ Type>
</1QO d>
</ VFSM>

<VFSM type="uni t">
<Type>DOL6P</ Type>
<Pref i x>DOL</ Prefi x>
<(bj ect >
<Name>MN DOL6P</ Nane>
<Pr operty>
<Name>CommPor t </ Nane>
<Val ue></ Val ue>
</ Property>
<Pr operty>
<Nane>PhysAddr </ Nane>
<Val ue>3</ Val ue>
</ Property>
<Pr operty>
<Nanme>Do0</ Nanme>
<Val ue>MN Do: Power </ Val ue>
</ Property>
<Pr operty>
<Nane>Dol</ Name>
<Val ue>MWN Do: Lanp</ Val ue>

</ Property>
</ Qbj ect >
<l d>
<Name>Do0</ Nane>
<Type>DO</ Type>
</1GO d>
<l G d>
<Nane>Dol</ Nane>
<Type>DO</ Type>
</10O d>
</ VFSM>

<VFSM type="unit">
<Type>Nl 4</ Type>
<Prefi x>Nl 4</ Prefi x>
<(bj ect >
<Name>MN NI 4</ Name>
<Pr operty>
<Name>ConmmPor t </ Nane>
<Val ue></ Val ue>
</ Property>
<Property>
<Nane>PhysAddr </ Nane>
<Val ue>5</ Val ue>
</ Property>
<Pr operty>
<Narme>Ni 0</ Name>
<Val ue>MN\ Ni : Cooki ngTi ne</ Val ue>
</ Property>
</ Obj ect >
<I G d>
<Name>Ni 0</ Name>
<Type>Nl </ Type>
</10 d>
</ VFSM>
</ vfsmm >

2.4.2 Simple Master-Slave Configuration

The following example shows how to present dependencies between various state
machines. The predefined VFSM “CMD” isused as an input and as an output and is
designed for inter-VFSM communication (see also chapter A.02 in Appendix A).

’ EntryAction: Sl aveCnd Start

SlaveVFSM_Init

22

VFSMML Fundamentals

states to Maiter

Slave 1 shows its

Figure5: Master VFSM

Start

timer_OVER

Figure 6: Slave FVSM

Command

:

7
Master

(Start_VFSM)

]

\J
Slavel

Start_SlaveVFSM

Master sends com- i
mands to its slaves

Slave2

Start_SlaveVFSM

Figure 7: Dependencies between M aster and Slave

The table below shows the set of objects given for the master VFSM specification.
Based on those objects, again, a set of input and output names can be defined.

Object Name Object Type Description

MyCmd CMD User command (incoming command)

SlaveVFSM VFSM Slave VFSM definition

SlaveCmd CMD Command to the slave VFSM (outgoing command

Table5: Master-Slave - Object Name Dictionary

Input Name Input Value Object Name
Start 1 MyCmd
SlaveVFSM_Init Init (Slave state) SlaveVFSM

Table 6: Master-Slave - Input Name Dictionary

Output Name Output Value Object Name

SlaveCmd

SlaveCmd_Start 1

Table 7: Master-Slave - Output Name Dictionary

The table below shows the set of objects given for the slave VFSM specification.
Both dlave VFSM instances are of the same VFSM type. Based on those objects,
again, a set of input and output names can be defined.

Object Name Object Type Description
MyCmd CMD-IN Command from master
timer TI A timer

Table 8 Master-Slave - Object Name Dictionary

Input Name Input Value Object Name
Start 1 MyCmd
timer OVER OVER timer

Table9: Master-Slave - Input Name Dictionary

Output Name Output Value Object Name
timer ResetStart ResetStart timer
timer_Stop Stop timer

Table 10: M aster-Slave - Output Name Dictionary

The mark-up representation of the master-slave exampleis given below:

<?xm version="1.0" ?>
<?xm -styl esheet href="vfsnm .xsl" type="text/xsl"?>
<! DOCTYPE vfsmm SYSTEM "vfsmm .dtd" >
<vfsnmm project="true">
<Nane>Mast er Sl ave</ Name>
<VFSM t ype="predefi ned" >
<Type>CMD</ Type>
<bj ect >
<Nanme>Mast er : MyCnrd</ Name>
<Pr operty>
<Nanme>Type</ Nane>
<Val ue></ Val ue>
</ Property>
</ Qbj ect >
<(bj ect >
<Nanme>S| ave: MyCnd</ Name>
<Description>start_sl ave vfsnx/ Description>
<Pr operty>
<Nanme>Type</ Nane>
<Val ue></ Val ue>
</ Property>
</ Obj ect >
</ VFSM>

<VFSM t ype="predefi ned" >
<Type>TI </ Type>
<bj ect >
<Name>Ti mer 1</ Name>
<Pr operty>
<Nane>Const </ Nane>
<Val ue>10</ Val ue>

24

VFSMML Fundamentals

</ Property>
<Pr operty>
<Nane>Cl ock</ Name>
<Val ue>sec</ Val ue>
</ Property>
</ Qbj ect >
<Cbj ect >
<Nane>Ti nmer 2</ Nane>
<Pr operty>
<Nane>Const </ Name>
<Val ue>20</ Val ue>
</ Property>
<Pr operty>
<Nane>Cl ock</ Name>
<Val ue>sec</ Val ue>
</ Property>
</ Qbj ect >
</ VFS\M>

<VFSM t ype="vfsni >
<Type>Start_VFSM</ Type>
<Pr ef i x>MAS</ Prefi x>
<Obj ect >
<Name>Mast er </ Name>
<Property>
<Nanme>MyCnd</ Nane>
<Val ue>Mast er : MyCnd</ Val ue>
</ Property>
<Pr operty>
<Nane>S| aveVFSM/ Nane>
<Val ue>Sl avel</ Val ue>
</ Property>
<Property>
<Name>S| aveCnd</ Nane>
<Val ue>Sl ave: MyCnd</ Val ue>
</ Property>
</ Qbj ect >

<| G d>
<Nanme>My Cnd</ Nane>
<Type>CMD- | N</ Type>
<l nput >
<Nanme>St ar t </ Nane>
<Val ue>1</ Val ue>

</l nput >
</1G d>
<I G d>
<Nanme>S| aveVFSM</ Nane>
<Type>VFSM\/ Type>
<Description>start_sl ave vfsnx/ Description>
</1G d>
<I G d>
<Name>S| aveCnd</ Nane>
<Type>CNMD- QUT</ Type>

<Description>start_sl ave vfsnx/ Description>

<Cut put >
<Nane>S| aveCnd_St art </ Nane>
<Val ue>1</ Val ue>
</ Qut put >
</10 d>

<St at e>
<Nane>| ni t </ Nane>

<Transition>
<Condi ti on>
<ci >Start</ci>
</ Condi ti on>
<St at eNane>St art </ St at eNane>
</ Transition>
</ St at e>
<St at e>
<Nane>St ar t </ Nane>
<EntryAction>Sl aveCnd_St art </ EntryActi on>
<Transition>
<Condi ti on>
<ci >Sl aveVFSM | ni t </ ci >
</ Condi ti on>
<St at eNane>| ni t </ St at eNane>
</ Transition>
</ St at e>
</ VFSM>

<VFSM t ype="vfsni >
<Type>Start_ Sl aveVFSM/ Type>
<Prefi x>SLA</ Prefi x>
<Obj ect >
<Name>S| avel</ Name>
<Description>start_sl ave vfsnx/ Description>
<Pr operty>
<Narme>M Crd</ Nane>
<Val ue>Sl ave: MyCnd</ Val ue>
</ Property>
<Property>
<Nane>t i mer </ Nane>
<Val ue>Ti mer 1</ Val ue>
</ Property>
</ Obj ect >
<bj ect >
<Name>S| ave2</ Nanme>
<Pr operty>
<Nanme>M Cnd</ Nane>
<Val ue>Sl ave: MyCnd</ Val ue>
</ Property>
<Property>
<Nane>ti mer </ Nane>
<Val ue>Ti mer 2</ Val ue>
</ Property>
</ Obj ect >

<l G d>
<Nane>My Cnd</ Nanme>
<Type>CMD- | N</ Type>
<I nput >
<Name>St ar t </ Nane>
<Val ue>1</ Val ue>
</l nput >
</1QO d>
<l d>
<Nane>t i ner </ Nane>
<Type>TI </ Type>
<I nput >
<Nane>t i mer _OVER</ Nane>
<Val ue>OVER</ Val ue>
</ | nput >
<Cut put >

26

VFSMML Fundamentals

<Nane>ti mer Reset Start </ Nane>
<Val ue>Reset St art </ Val ue>

</ Qut put >

<Qut put >
<Nane>t i mer _St op</ Nane>
<Val ue>St op</ Val ue>

</ Cut put >

</10 d>

<St at e>
<Nane>| ni t </ Nane>
<EntryAction>tiner_Stop</EntryAction>
<Transition>
<Condi ti on>
<ci >Start</ci>
</ Condi ti on>
<St at eNanme>Run</ St at eNanme>
</ Transition>
</ St at e>
<St at e>
<Nane>Run</ Nane>
<EntryAction>tiner_Reset Start</EntryActi on>
<Transition>
<Condi ti on>
<ci >ti mer _OVER</ ci >
</ Condi ti on>
<St at eNanme>| ni t </ St at eNane>
</ Transition>
</ St at e>
</ VFSM>
</ vfsmm >

2.5 VFSMML Syntax and Grammar
VFSMML is an application of Extensible Markup Language (XML), and as such its
syntax is governed by the rules of XML syntax, and its grammar isin part specified
by the Document Type Definition (DTD). In other words, the details of using tags,
attributes, entity references and so on are defined in the XML language specification
and the details about VFSMML element and attribute names, which elements can be
nested inside each other, and so on are specified in the VFSMML DTD in A.03.

3 VFSMML Markup
3.1 Element Usage Guide

3.1.1 Summary of Elements

The Figure 8 below gives an overview about all defined tags and their hierarchy. All
bold italic tags can appear many times inside their parent tags. The (0) means, the
element is optional, (a) meansthere is an attribute defined.

The <Condition> tag can be asingle name or alogical expression given using
notation as defined in MathML. Here only following tags are used: <apply>, <and>,
<or> and <ci>. In the following chapter more accurate description is given.

The dependencies between certain tags are explained in section 3.2.

vismml (a)
= Name (0)
= Description (0)
= VFSM (a)
= Type
= Description (0)
= Prefix (0)
= Object (0)
= Name
= Description (0)
= Property (0)
= Name
= Value
= 10id (o) |
= Name
= Type
= Description (0)
= Input (0)
= Init (0)
= Name
= Value
= Output (0) |
= Name
= Value

= State (a,0) |
= Description (0)
= Name (0)
= EntryAction (0)
=
=

ExitAction (0)
InputAction (0)

= Condition

= Action
= Transition (0) |

= Condition

= StateName

= Action (0)

Figure 8 VFSMML tags and their hierarchy

29

3.1.2 Overview of Syntax and Usage

In the following all defined tags are listed a phabetically.

<Action> Tag
The VFSM virtua output.

Each output name is defined in the <IOid> tag section and can be used in the <State>
tag section as <Action>. Each <Action> tag value must be first defined in the <lOid>
tag section (10id — Output — Name) before it can be used. The <Action> tag is
obligatory in the <InputAction> tag section and optional in the <Transition> tag
section.

Example:

In following the action “ Start” will be set when entering the state or when receiving
the command “CmdStart”.

<I G d>

<Qut put >
<Nane>St ar t </ Nane>
<Val ue>Hl GH</ Val ue>
</ Cut put >
</1Q d>
<St at e>
<EntryAction>Start</EntryActi on>
<l nput Acti on>
<Condi ti on>
<ci >CndStart</ci >
</ Condi ti on>
<Action>Start</Action>
</ I nput Acti on>
</ St at e>

<Condition> Tag
The definition of conditionsto perform atransition or execute an input action.

Thevalueisalogica expression using notation as defined in MathML. The
<Condition> tag is obligatory in the <InputAction> and <Transition> tag section.

Examples:

1. Singleinput condition. Do something when the input name “ Start” is set:
<Condi ti on>
<ci>Start</ci>
</ Condi ti on>

2. OR condition. Do something, when “ Stop” or “Door_Open” is set:
<Condi ti on>
<appl y>
</ or>
<ci >St op</ ci >
<ci >Door _Open</ci >
</ appl y>
</ Condi ti on>

30

VFSMML MarkUp

3. OR and AND condition. Do something, when “ Start” and “Door_Open” or
“Start” and “ Timer_Over” isset, i.e. “Start AND (Door_Open OR

Time _Over)”:
<Condi ti on>
<appl y>
</ and>
<ci>Start</ci>
<appl y>
</ or>
<ci >Door _Open</ci >
<ci >Ti mer_Over</ci >
</ appl y>
</ appl y>

</ Condi ti on>

<Description> Tag
An optional comment allowed for certain tags.

Following tags can contain the optional <Description> sub tag: <vfsmml>, <VFSM>,
<Object>, <IOid> and <State>.

<EntryAction> Tag
VFSM output name, set when entering a state.

See <Action> tag for more information. <EntryAction> is an optional tag in the
<State> tag section only. Any number of <EntryAction> tagsis allowed inside a
<State> tag.

<ExitAction> Tag
VFSM output name, set when exiting a state.

See <Action> tag for more information. <ExitAction> is an optional tag in the
<State> tag section only. Any number of <ExitAction> tagsis alowed inside a
<State> tag

<Init>Tag
Specifiesinput names valid after the VFSM start-up.

Can be“true” or “false”. The default valueis“false”. If “true” is set, the current
nameis active at the VFSM start-up. <Init> is an optional tag inside the <Input> tag
section only. For instance the name “aways’ should always be active as per
definition.

<Input> Tag
An input name definition based on possible values of a given Object.

Thereis any number of <Input> tags allowed inside an <IOid> tag. Each <Input> tag
contains three sub tags. <Init> (optional, default value is “false”), <Name> and
<Vaue>.

Examples:

1

Input based on a predefined VFSM (DI). Theinstance DI_1 is created on the
type DI. For this instance the name “door_closed” is defined to represent the
value “LOW” of the 10id “Di_door” (see aso definition of DI in Appendix A).

<VFSM t ype="predefi ned” >
<Type>Dl </ Type>
<(bj ect >
<Nane>Dl 1</ Nanme>
</ Obj ect >
</ VFSM>
<VFSM>
<Nane>MVFSMW/ Name>
<(bj ect >
<Nanme>MyVFSML</ Nanme>
<Pr operty>
<Nane>Di _door </ Nane>
<Val ue>Dl _1</ Val ue>
</ Property>
</ Obj ect >
<I G d>
<Nane>Di _door </ Nane>
<Type>Dl </ Type>
<l nput >
<Nane>door _cl osed</ Nanme>
<Val ue>LON./ Val ue>
</ | nput >
</1G d>

</ VESM>

Input based on aVFSM. Theinstance vism_A1 is created on the type
vfsm_type A. For thisinstance the name “slave_stop” is defined to represent
the state “stop” of thevfsm_A1VFSM.

<VFSM>
<Type>vfsm type A</ Type>
<(bj ect >
<Name>vf sm Al</ Name>
</ Obj ect >
<State>start</State>
<St at e>st op</ St at e>

</ VFS\V>
<VFSM>
<Type>vfsm type B</ Type>
<bj ect >
<Nane>vf sm Bl</ Nanme>
<Pr operty>
<Nane>Al</ Nane>
<Val ue>vf sm Al</ Val ue>
</ Property>
</ Obj ect >
<I G d>
<Nane>Al</ Name>
<Type>vfsm type_ A</ Type>
<I nput >
<Nane>sl| ave_st op</ Nane>
<Val ue>st op</ Val ue>
</ | nput >
</1Q d>
</ VFSM>

32

VFSMML MarkUp

<InputAction> Tag
VFESM output name, set when certain conditions (input names) are given.

One <InputAction> tag contains two mandatory sub tags: <Condition> and
<Action>. Any number of <InputAction> tags is allowed inside each <State> tag.
The <InputAction> tag is optional and possible only inside the <State> tag.

<l0id> Tag
Anidentifier of any kind of VFSM type used inside certain VFSM (Object —
Property — Name).

Any number of <lOid> tagsis allowed inside a<VFSM> tag. One <lOid> tag may
contain the following sub tags: <Name>, <Type>, <Description>, <Input> and
<Output>. The <Input> and <Output> tags define the names of its possible values.
The <Type> specifies the object type used for this definition (i.e. another VFSM or
predefined VFSM).

Example:

An 10id based on a DI object. For instance the name “on” is defined to represent the
value “HIGH” (see also definition of DI in Appendix A).

<VFS\V>
<l O d>
<Nane>Swi t ch</ Name>
<Type>Dl </ Type>
<l nput >
<Name>on</ Nanme>
<Val ue>Hl GH</ Val ue>
</l nput >
</1QO d>
</ VFSM>
<Name> Tag

Defines the name of the content specified inside its parent tag.

The <Name> tag is used with the following tags: <vfsmml>, <Object>, <Property>,
<lOid>, <Input>, <Output> and <State>. Each <vfsmml> has a unique name. Each
<Object> has a unique name inside its <vfsmml> tag. Each <IOid>, <Input>,
<Output> and <State> has a unique name inside its <VFSM> tag.

<Object> Tag
Creates and describes the properties of an incarnation of a VFSM.

The <Object> tag contains the following sub tags: <Name>, <Description> and
<Property>. Object properties depend on its VFSM. In Appendix A all predefined
VFSM and their properties for a default VFSMML document are listed. The
<Object> tag is mandatory inside the <VFSM> tag, but any number of <Object> tags
isalowed. See also section 3.2 for more information about tag dependencies.

<Output> Tag
An output name definition based on possible values of the used object.

There is any number of <Output> tags allowed inside an <IOid> tag. Each <Output>
tag contains two sub tags. <Name> and <Value>.

Examples:

Output based on a predefined VFSM (DO). Theinstance DO _1 is created on the type
DO. For thisinstance the name “close_door” is defined to represent the value
“HIGH” of the 10id “door” (see also definition of DO in Appendix A).

<VFSM t ype="predefi ned” >
<Type>DO</ Type>

<hj ect >
<Nane>DO 1</ Nanme>
</ Qbj ect >
</ VFSM>
<VFSM>
<Type>MyVFSM/ Type>
<(bj ect >
<Nanme>MyVFSML</ Nanme>
<Pr operty>
<Nane>door </ Nane>
<Val ue>DO 1</ Val ue>
</ Property>
</ Obj ect >
<I G d>
<Name>door </ Nanme>
<Type>DO</ Type>
<Qut put >
<Nane>cl| ose_door </ Nane>
<Val ue>Hl G/ Val ue>
</ Qut put >
</10 d>
</ VFSM>
<Prefix> Tag

Prefix of atype definition.

Each VFSM type (besides predefined VFSM) has a unique three-letter prefix inside
its <vfsmml> tag.

<Property> Tag
Defines a property of a VFSM.

Properties are parameters which stay constant at least for the execution time of the
entire system. Properties define also all the objects on which the current VFSM is
based (other VFSMs or predefined VFSMs). Thereis any number of <Property>
tags allowed inside an <Object> tag.

Examples:

1. Constant parameter: definition of scanner step-motor properties: the motor is
only responsible for the x-direction and the maximum number of stepsis 100.

<VFSM>
<Type>not or </ Type>
<hj ect >

VFSMML MarkUp

<Nane>not or _x</ Nane>

<Pr operty>
<Nane>max_x</ Name>
<Val ue>100</ Val ue>

</ Property>

<Pr operty>
<Name>max_y</ Nane>
<Val ue>0</ Val ue>

</ Property>

</ Obj ect >

</ VFSM>

2. Objects on which the current VFSM is based: the VFSM contains atimer and
is used two times in the system. Each VFSM copy contains an own timer (T
object) with different properties:
<VFSM t ype="pr edefi ned” >

<Type>TI </ Type>
<bj ect >
<Name>t i mer 1</ Name>
</ Qbj ect >
<bj ect >
<Name>t i mer 2</ Name>
</ Qbj ect >
</ VFS\V>
<VFSM>
<Type>S| ave</ Type>
<(bj ect >
<Nane>S| avel</ Name>
<Pr operty>
<Nane>t i mer </ Nane>
<Val ue>ti mer 1</ Val ue>
</ Property>
</ Qbj ect >
<bj ect >
<Name>S| ave2</ Name>
<Property>
<Nane>t i mer </ Nane>
<Val ue>t i mer 2</ Val ue>
</ Property>
</ Obj ect >

</ VFSM>

<State> Tag
Describes one state of a VFSM.

Thereis any number of <State> tags alowed inside a<VFSM> tag. One <State> tag
contains following sub tags: <Description>, <Name>, <EntryAction>, <ExitAction>,
<InputAction> and <Transition>. The <State> tag contains one mandatory attribute
“adways’, which can be “true” or “false”. The default value of this attribute is “false”.

<StateName> Tag
One state name from the set of al states of the current VFSM.

See also section 3.2 for more information about tag dependencies.

<Transtion> Tag
The state transition definition.

A <Transition> tag is optional and contains three sub tags: <Condition>, <Action>
(optional) and <StateName>. Any number of <Transition> tagsis allowed inside a
<State> tag.

<Type> Tag
Defines atype name of aVFSM.

Based on this name any number of instances of a given VFSM can be defined. The
name of an object is then an instance of this type. The <Type> tag is mandatory.

For instance, a system uses 10 timers of type Tl. Then there are 10 objects defined:

<VFSM t ype="pr edefi ned” >

<Type>TI </ Tl >
<bj ect >

<Name>t i mer 1</ Name>
</ Qbj ect >
<(bj ect >

<Name>t i mer 2</ Name>
</ Obj ect >

<(hj ect >
<Nane>t i ner 10</ Nanme>
</ Cbj ect >
</ VFSM>

<Value> Tag
The value represented by the name of <Property>, <Input> or <Output> tag.

For <Input> and <Output>, the value must be from the range of values defined in the
appropriate <VFSM> tag. For <Property> of a predefined VFSM only supported
property values (see predefined VFSM definitionsin Appendix A) are alowed. For a
<Property> section of anew VFSM tag any values are possible.

<VFSM> Tag
Announces aVFSM definition.

There is any number of <VFSM> tags possible inside a <vfsmml> tag. Each
<VFSM> tag contains following sub tags. <Type>, <Object>, <Description>,
<Prefix>, <IOid> and <State>. The <VFSM> tag contains one mandatory attribute
“type”, which can be “vfsm”, “predefined” or “unit”. The default value of this
attribute is “vfsm”. For attributes “predefined” and “unit” the sub-tag <State> is not
alowed.

<vfsmml> Tag
Theroot VFSMML tag.

The <vfsmml> tag includes a VFSM or a system of VFSMs. Each <vfsmml> tag
contains following sub tags: <Name>, <Description> and <VFSM>. Thisis the top
level VFSMML tag. The <vfsmml> tag contains two mandatory attributes:

“project” —can be “true” or “false”. The default value of this attributeis “false”.

36

VFSMML MarkUp

“source” — can be “default” or any other string. The default valueis “ default”. This
attribute is used to announce predefined object types used later in the VFSM
specification. Appendix A on page 41 lists all predefined typesin a“default” system.

3.1.3 Element Attributes
In following all defined attributes are listed alphabetically:

always

The <State> tag contains the attribute “aways” which is usually set to false and
means a normal state of an FSM. One of the states of a FSM can contain
always="true". This defines not a state of the affected FSM, but is a definition of
input actions valid for each state of this FSM (i.e. input actions always set). Such an
“always-state” does not have a name or entry/exit action, nor it is possible to define a
transition to or from this state.

project

The <vfsmml> tag contains the attribute “ project”, which allows to distinguish
between complete independent project specifications (value “true”) and single VFSM
specifications (value “false”).

source
The <vfsmml> tag contains the attribute “source”, which specifies the source of the
predefined types. The default valueis “ default”. Appendix A describes al predefined
typesin adefault system. There are any values allowed, however the target system
has to know the VFSM definition of the predefined VFSM used, to be able to extract
the VFSMML data.

type
The <VFSM> tag contains the attribute “type’, which alows to distinguish between
new VFSM definitions (value “vfsm™), known predefined VFSM definitions (value

“predefined”) and simple unit definitions (value “ unit”).
3.1.4 Error Message

There is aneed for one error message in case the value of the source attribute is
unknown. Then the VFSMML message can not be correctly interpreted. The receiver
of aVFSMML definition containing an undefined ‘ source’ attribute shall return an
empty <vfsmml> tag where the value of the source attribute is set to “unknown”:

<vfsmm source="unknown” ></vfsnmmi >

3.2 Linked Information
Some VFSMML tags define values, which are linked together. Following Table 11
gives an overview of tags which uses names previously defined:

Tag Linked to Description

<StateName> <State> — <Name> Specifies a name of a state previously defined
<Action>, <Output> — <Name> Specifies a name of an output previously defined
<EntryAction>,

<ExitAction>,

<InputAction>

<Condition> <Input> — <Name> Specifies a name of an input previously defined.

Also a set of input names all connected with an
OR or AND is possible. See <Condition> tag
description on page 30 for more details

Table11: Linked Tags

Thereis also some logical information linked together:

The <VFSM>-<Object>-<Name> is one (of many possible) incarnations of the
<VFSM>-<Type>. Initslist of properties, first of al, any <lOid>-<Name> has to be
defined, i.e. the <Object>-<Name> of the VFSM on which this specific <lOid>-
<Name> is based. The following example shall explain this dependency:

<VFSM>

<Type>MyVFSM/ Type>
<bj ect >
<Nanme>NewWFSML</
<Property>
<Name>t i mer </ Nanme>
<Val ue>ti nmer 1</ Val ue>
</ Property>
<Pr operty>
<Name>sl| ave</ Nanme>
<Val ue>S| aveVFSML</ Val ue>
</ Property>
<Pr operty>
<Name>swi t ch</ Nane>
<Val ue>swi t ch3</ Val ue>
</ Property>

Thisisthe first
incarnation of the VFSM
type ‘MyVFSM’

Thisisthe second
incarnation of the VFSM
type ‘MyVFSM’

</ Qbj ect >
<Cbj ect >
<Nanme>NewWFSMZ</ Nanme>
<Property> fTheee properties define
<Name>t i ner </ Name> al objects on which any
<Val ue>t i mer 2</ Val ue> of the 10id nameis
</ Property> Lcreated.
<Pr operty>
<Nane>sl| ave</ Nane>
<Val ue>S| aveVFSML</ Val ue>
</ Property>
<Pr operty>
<Name>swi t ch</ Name>
<Val ue>sw t ch2</ Val ue>
</ Property>
</ Qbj ect >
<I G d>
<Name>t i mer </ Nane>
</1Q d> Each of the 10id names must
<l O d> appear in each incarnation of
<Nane>s| ave</ Nane> this VFSM, to specify the

S object on which it is based
</10 d>

38

VFSMML MarkUp

<G d>
<Nane>swi t ch</ Nane>

<10 d>
</ VFSM>

In other words, each VFSM hasiitstype (VFSM — Type). Based on this type any
number of incarnationsis possible (VFSM — Object — Name). Each incarnation uses
own incarnations of other VFSM, e.g. a“switch” isatypical VFSM used by other
VFSM. The description of how to use the foreign VFSM is given in the proper 10id

section (VFSM —10id — Name).

Appendix A Predefined default VFSM

If no special “source” attribute is given, the default

source="defaul t”

Isused. The Table 12 below gives an overview of all predefined VFSM, their
definitions are presented in the following sub-sections.

Type Input Values Output Values

AL - Coming, Going, Staying

CMD Any positive number >0 Clear (=0), any positive number > 0
CNT RUN, STOP, RESET, OVER, OVERSTOP |Start, Stop, Reset, ResetStart, Inc, Dec
DAT UNDEF, DEF, CHANGED, INIT -

DI HIGH, LOW

DO - High, Low

ECNT RUN, STOP, RESET, OVER, OVERSTOP |Start, Stop, Reset, ResetStart, Inc, Dec
NI UNDEF, DEF, CHANGED, INIT -

NO - Off, On, Set

OFUN Any positive number Any positive number

PAR UNDEF, DEF, CHANGED, INIT -

STR ON, OFF, SET, MATCH, NOMATCH Off, Init, Match, Nomatch, Def

SWIP LOW, IN, HIGH, OFF on, off

TAB - Any positive number

TI RUN, STOP, RESET, OVER, OVERSTOP |Start, Stop, Reset, ResetStart

uDC UNDEF, DEF, CHANGED, INIT Clear, Up, Down

XDA Any positive number Any positive number

Table 12: Predefined VFSM and their value ranges (source=" default”)

Each predefined VFSM contains one or more properties. Those are constant
parameters which can only be changed during VFSM setup, but not while run-time.

Some of the predefined objects are objects defined to exchange control information
with the real world or with other state machines. In particular those objects are: DI,
DO, NI, NO, TAB, CMD and XDA. Those objects are defined using the master slave
concept. The hierarchy begins with the VFSM control system on top and ends with
the real controlled system on the bottom as shown in the diagrams below.

In Figure 9 the objects DI, DO, NI, NO and TAB are slaves from the VFSM control
system and masters from the real controlled system point of view. Each master sends
commandsto its slave. Each slave shows his current state to its master. For instance
the DI VFSM is controlled by the states of the real existing device connected to it
(e.g. aswitchison, aflag is present etc.) and presents its states to the higher layers of
the VFSM control system. The DO VFSM is controlled by the commands from the
higher layer of the VFSM control system and sends own commands to the real
existing device connected to it (e.g. to aswitch).

41

Figure 9. Objects defined to exchange control infor mation with the real world

Figure 10 shows the principle of the CMD object used to exchange data between
state machines.

Figure 10. CM D object defined to exchange control information between state machines

A.01 Alarm (AL)

The AL VFSM controls an alarm queue. The following state machine diagram
describes the behavior of the AL VFSM:

42

Appendix A

COMING

Renpve al arm

I ns

ert alarm

Mai ntain al arm

If comng then maintain alarm

Figure1l: AL VFSM

com

Renpve al arm

ack

Insert alarm

The actions Insert, Remove and Maintain alarm are explained in the table below. E:
means an entry action, X: means an exit action, |: means an input action.

Action Description
Insert alarm Add current alarm to the top of the alarm queue
Remove darm Remove current alarm from the alarm queue

Maintain alarm

Move the current alarm to the top of the alarm queue

Table 13: AL Output Names

The input names used for state transitions:
Input Name Description
Coming Erroneous situation has occurred (incoming command)
Going Erroneous situation has gone (incoming command)
Staying Erroneous situation has occurred. The situation can not be solved (incoming
command)
Ack Situation acknowledged (incoming command)

Table 14: Al Input Names

The

AL VFSM has following properties:

Category
Defines the alarm severity. Can be any number > 0..65535. Some alarms depend on
the current state and input name. The table below specifies the meaning of special

categories:

Category Input Name

Coming, Staying Going, Ack, None
1 Write Error to EventLog Write Info to EventLog
2 Write Warning to EventLog Write Info to EventLog
4 Write Info to EventLog Write Info to EventLog
other Do not change EventLog (user defined)

Table 15: AL Alarm Severity

Text

Defines the alarm text. To support different languages and references to other data
objects two special identifiers are defined:

%<ObjectName>" - this string in the alarm text defines a reference to a data object.

For instance
Val. is too high: %\ Voltage V
will be displayed as

Val. is too high: 8.9 V

If an ObjectName NiVoltage is defined and its value at the moment of the alarm
generation is 8.9.

IDS_<Textld> - this string in the alarm text will be replaced by a string stored in a
resource file used with the system. For instance

| DS_VAL_TOO HI GH 9\ Vol tage V

will be displayed as

Val. is too high: 8.9 V

If an object NiVoltage exists asin the previous example and in aresource file one
line like following will be found*:

IDS_VAL_TOO HIGH “Val . |s too high”

A.02 Command (CMD)

The CMD VFSM is used to exchange control information between state machines as
explained at the beginning of this appendix. The following state machine diagram
describes the behavior of the CMD VFSM:

! thisis not atag, but a place holder for a defined ObjectName
% The format of such aresource file is application dependant and not specified in the VFSMML standard.

a4

Appendix A

If (cmd_input) then cnmd_out put

Figure12: CMD VFSM

The output is always same as the input. The system is triggered any time a command
was send, also when the same command was repeated. A command is represented by
anumber. The value O isreserved for the ‘clear’ action and must not be used for
other control purposes.

The CMD VFSM isused in communication between state machines in a master-dave

moddl:
Master Slave
VESM VESM
Cll=etar cmd_input cmd_output Gifoni]

Figure 13: Usage of CMD VFSM

From the view of the Master VFSM the CMD VFSM isaCMD-OUT VFSM, i.e. the
Master performs the input action ‘cmd’ sending it to CMD VFSM. From the view of
the Slave VFSM the CMD VFSM isthe CMD-IN VFSM, i.e. the Slave VFSM isthe
receiver of the output action ‘cmd’ from the CMD VFSM.

The CMD VFSM has following properties:

Type
Filename, where all commands (numbers) are mapped to meaningful names, i.e.
strings. These strings serve the client to display the data appropriately.

A.03 Counter (CNT)
The CNT VFSM controls a counting device. The following state machine diagram
describes the behavior of the CNT VFSM:

5
OVERSTOP

reset_start

reset
reset_start

start

start | reset_start

start | reset_start

reset_start expiration

reset

Figure 14: CNT VFSM

The input names used for state transitions:

Input Name Description

start Incoming command from a master: start counter

stop Incoming command from a master: stop counter

reset Incoming command from a master: reset counter (don't care if counter running or
stopped)

reset_start Incoming command from a master: reset and start counter

expiration The counting device reports a new state: limit exceeded

Table 16: CNT Input Names

The CNT VFSM has following properties:

Const
Defines the counter limit. Can be a number (e.g. 10) or an NI, DAT or PAR object.

A.04 Data (DAT)
The DAT VFSM controls a data object which is used to receive and store data. On
starting the VFSM isin state OFF. The following state machine diagram describes
the behavior of the DAT VFSM:

46

Appendix A

on new_data
off
3
off CHANGED
set
off
new_data
Figure 15: DAT VFSM
The input names used for state transitions:
Input Name Description
on Incoming command from a master: activate object
off Incoming command from a master: deactivate object
new_data The owned data object reports a new state: new data received
set The owned data object reports a new state: data read (by somebody) i.e. the change
has been notified / consumed.

Table17: DAT Input Names

The DAT VFSM has following properties:

Format
Defines the data type of the stored value. The following types are defined:

bool: true (1) or false (0)

char: 7 bit character

uchar: 8 bit character (unsigned)

byte: -127..+127 (8 bit signed)

ubyte: 0..255 (8 bit unsigned)

short: -32767..+32767 (16 bit signed)

ushort: 0..65535 (16 bit unsigned)

| ong: -2147483647..+ 2147483647 (32 bit signed)
ul ong: 0..4294967295 (32 bit unsigned)

float: 32 bit floating point (8.43x10%<|f|<3.37x10%)

double: 64 bit floating point (4.19x1073°7<|f|<1.67x103%)
string: a character string of any length

poi nter: -2147483647..+ 2147483647 (32 bit signed)

o%E0. . %&8: 32 bit floating point, exponent repr. e.g. “3.5e-12"
%0..9%8: 32 bit floating point, fixpoint repr. e.g. “1.234"
%30. . %38: autonatic conversion data type

%En and %Fn are floating point values. The number n (0..8) specifies the number of
digits representing the number when sent to a client. It is not the internal
representation; this is always the full range. The sameisvalid for %Gn, however the
datatype is found automatically.

Unit
Defines the unit of the type (e.g. V, mA, Bar, etc.). This string is free selectable and
serves the client to display the data appropriately.

A.05 Digital Input (DI)
The DI VFSM is used to receive states of areal controlled device. The following
state machine diagram describes the behavior of the DI VFSM:

high'

low

high

low

Figure 16: DI VFSM

When starting, the VFSM isin state UNDEF, i.e. the digital value (HIGH or LOW) is
not defined / known yet. From the control system point of view the DI VFSM isa

48

Appendix A

dlave and shows its status by its states (see also the Figure 9. Objects defined to
exchange control information with the real world and its description).

The input names used for state transitions are states of the real controlled device:

Input Name Description
high Thereal controlled deviceisin state high/on/true (etc.)
low Thereal controlled device isin state low/off/fal se (etc.)

Table 18: DI Input Names

The DI VFSM has following properties:

Invert
Optiona, if not present the default valueis FALSE. It can be TRUE if the value shall

be inverted for further evaluation. For instance, if aDl is set to LOW, it was received
asHIGH.

A.06 Digital output (DO)
The DO VFSM is used to send commandsto area controlled device. The following

state machine diagram describes the behavior of the DO VFSM:

high

high'

high

low

Figure17: DO VFSM

When starting, the VFSM isin state UNDEF, i.e. the digital value (HIGH or LOW) is
not defined yet. From the control system point of view the DO VFSM isaslave and
receives commands (low or high). From the real controlled device point of view DO
Isamaster and sends commands (low or high) to it.

The input names are commands from the control system (master) and are used for the
state transitions as follow:

Input Name Description

High

Incoming command from a master: high

Low

Incoming command from a master: low

Table 19: DO Input Names

The output names are commands to the real controlled system (slave) and are used as
entry actionsin following states:

State Name Description

HIGH

Entry action: send command ‘high’ to the real controlled device

LOW

Entry action: send command ‘low’ to the real controlled device

Table 20: DO Output Names

The DO VFSM has following properties.

Invert
Optional, if not present the default valueis FALSE. It can be TRUE if the value shall

be inverted for further evaluation. For instance, if aDO is set to LOW, it will be sent
out as HIGH.

A.07 Event counter (ECNT)

The ECNT isaVFSM derived from the CNT VFSM. Its behavior is the same as of
the CNT VFSM, however it is used to count any kind of events inside the VFSM
control system and therefore afew additional properties are defined:

Const

Defines the counter limit. Can be a number (e.g. 10) or another NI, DAT or PAR
object.

I nput
Defines the object used as base for the counter, i.e. VFSM which shall be observed
by the counter.

UpValue
Defines the event on the observed object, which increases the counter.

A.08 Numeric input (NI)

The NI isaVFSM derived from the DAT VFSM. Its behavior is the same as of the
DAT VFSM. Its purpose isto communicate with areal existing device as its master

(see also Figure 9 on page 42 and its description). There are following properties
defined:

50

Appendix A

Format
Defines the data type of the stored value. All the same data types as for the Data

object besides string (see A.04) are possible.

Unit
Defines the unit of the type (e.g. V, mA, Bar, etc.). Thisstring is freely selectable and
serves the client to display the data appropriately.

ScaleMode
Defines the scale mode of the type:

lin: y=ax+b
ax+b

exp: y=e€
|l og: Yy =log(ax+b)

ScaleFactor
Defines the scale factor for the scale mode (the value of a).

Offset
Defines the offset for the scale mode (the value of b).

Threshold
Defines the threshold for the NI value.

A.09 Numeric output (NO)
The NO VFSM is used to provide datato areal controlled device. On starting, the
NO VFSM isin state OFF. The following state machine diagram describes its

behavior:

no_data
read_data_once read data_always

set on

always off

Figure 18: NO VFSM

The purpose of the NO VFSM isto send internally stored data to the real controlled
device asits master (see also Figure 9. Objects defined to exchange control
information with the real world on page 42 and its description).

The input names are commands from the control system (master) and are used for the
state transitions as follow:

Input Name Description

set Incoming command from a master: activate the object once

on Incoming command from a master: activate the object continuoudly
off Incoming command from a master: deactivate the object

Table21: NO Input Names

The output names are commands to the real controlled system (slave) and are used as
entry actions as follows:

State Name Description

SET Entry action: send command ‘read_data_once’ to the real controlled device
ON Entry action: send command ‘read_data_always' to the real controlled device
OFF Entry action: send command ‘no_data’ to the real controlled device

Table 22: NO Output Names

The following properties are defined:

Format
Defines the data type of the stored value. All the same data types as for the Data
object besides string (see A.04) are possible.

Unit
Defines the unit of the type (e.g. V, mA, Bar, etc.). This string is free selectable and
just serves the client to display the data appropriately.

ScaleMode
Defines the scale mode of the type:

lin: y=ax+b
ax+b

exp: y=¢€
log: Yy =log(ax+bh)

ScaleFactor
Defines the scale factor for the scale mode (the value of a).

Offset
Defines the offset for the scale mode (the value of b).

OutData
Defines the object (TAB, DAT, PAR, NI or UDC) to be used for output.

A.10 Output function (OFUN)
The OFUN VFSM is used to enable the control system to evaluate results of certain
calculations which are not 1/0 related. The OFUN VFSM has only one state and its
output is afunction of the input. The following state machine diagram describes its
behavior. The function f is user defined.

52

Appendix A

Cmd

Figure 19: OFUN VFSM

The following properties are defined:

FunctionName
Defines the name of the function f which implements the OFUN object (e.g. aC++
function).

UnitName
Defines the unit (interface) or VFSM to be accessed by the coded function.

A.11 Parameter (PAR)
The PAR isaVFSM derived from the DAT VFSM. Its behaviour is the same as of
the DAT VFSM. Its complexity is very similar to the NI object. However the data
stored inaPAR VFSM can be saved to be available after a system restart. The
following properties are defined:

Category
Defines how to save the parameter value. The following categories are possible
(PP=Process Parameters, EP=Equipment Parameters):

PP. store the paranmeter tenporary (for current sesion)

PP_Coded: exactly the sane as PP, however the parameter value is a
result of a calculation. There is no need to distinguish between
PP and PP _Coded, besides that the user knows the source of the
dat a.

EP. store the paraneter permanently for the current user

EP_LM USER store the paraneter permanently for all users

EP LM ADM N: store the paraneter pernanently for all users, can be
change only by a system adni ni strator

Format
Defines the data type of the stored value. All the same data types as for the Data
object (see A.04) are possible.

Unit
Defines the unit of the type (e.g. V, mA, Bar, etc.). Thisstring is free selectable and
serves the client to display the data appropriately.

LimitLow

Defines the lowest accepted value.
LimitHigh

Defines the highest accepted value.

InitValue
Defines the initial value of the parameter.

A.12 String (STR)

The STR VFSM is used to control a data object used to evaluate strings. In detail, it
compares the received string with aregular expression (RE). Theresult isa*match”,
“no-match” or “error”. The regular expression itself can be aDAT, PAR or ahard
coded string. The regular expression alows all special characters as known in UNIX
tools like sed, awk. This means that also multiple matches are possible, i.e. the
compare result “match” can deliver more then one resulting string. The resulting
(sub)string(s) can be stored in other objects such as STR, DAT, PAR or NI.
Dependant on the data type of the destination object, the resulting (sub-) string will
be converted. In case the conversion is not possible the destination object will be not
changed.

The table below describes all alowed regular expressions:

RE Meaning Example
. Matches one arbitrary character a.c matches ‘abc’ but not ‘abbc’
N Matches the beginning of astring ~ab matches *abcd’ but not ‘ cdaby’
$ Matches the end of a string ab$ matches ‘cdab’ but not ‘abcd’
\n n=1..9, matches the same string of charactersas | (ab(cd)ef)A\2 matches ‘abedefAcd’
was matched by a sub expression enclosed
between () preceding the \n. n specifies the n-th
sub expression
() sub expression (\d)A(\d) matches 1A2, 0A4 ...
[] Defines a set of charactersto be matched [aZ] matches's’, ‘'w’... but not ‘S, ‘W' ...
] Defines al characters except the charactersin [*1-9] matches‘s, ‘W’ ... butnot ‘1", ‘2'...
the set
(11) Matches one of the alternatives (ablcd) matches *ab’ and ‘ cd’
RE+ Matches one or more times the RE [*1-9]+ matches ‘ StateWORK'S' but not ‘ Obj5’
RE? Matches one or zero times the RE abc? matches ‘ab’ and ‘abc’
RE* Matches zero or more times the RE ab* matches‘a’, ‘ab’, ‘abb’ ...
RE{n} Matches exactly n times the RE ab{2} matches ‘abb’ only
RE{n,} Matches at |east n times the RE ab{2,} matches ‘abb’, ‘abbb’ but not ‘ab’
RE{ n,m} Matches any number of occurrences between n ab{ 1,2} matches'ab’ and ‘abb’ only

and minclusive

Table23: STR VFSM - Allowed Regular Expressions

The following state machine diagram describes the behavior of the STR VFSM:

Appendix A

off
5
error
off DEF
E:
I: set
nomatch match
set set
off
ol
off
nomatch match

error

Figure20: STR VFSM

The Input action in states INIT and DEF is always the same: analyze string if anew
string has arrived. The Entry action is always the same: reset the analysis function.

The input names used for state transitions:

Input Name Description

On Incoming command from a master: activate object

Off Incoming command from a master: deactivate object

Set Incoming command from a master: results eval uated

Match The owned data object reports a new state: sub-string(s) found
Nomatch The owned data object reports a new state: no sub-string found
Error The owned data object reports a new state: error evaluating the RE

Table 24: STR Input Names

The STR VFSM has following properties:

I nput
Defines the source string to be analyzed. Can be DAT or PAR.

RegularExpression
Defines the regular expression to be used. Can be a constant string, DAT or PAR.

Substring
Defines the destination object: DAT, PAR, STR or NI. This property isalist, i.e.

there can be many destination objects, in case there are many matches possible. The
number of parentsin the RE gives the number of possible sub strings.

A.13 Switch point (SWIP)
The SWIP VFSM is used to control aswitch point function which is used to evaluate

changes of data of other VFSM. The following graph shows the usage of the SWIP

VFSM:
Input valueA
ﬂlGH\
LimitHigh
/ N \
LimitLow
/ LOW o
- >
time

The following state machine diagram describes the behavior of the SWIP VFSM:

56

Appendix A

0 high

on & low
off in low
on & high
off
hig
on&in in

Figure21: SWIP VFSM

The input names used for state transitions:

Input Name Description

on Incoming command from a master: activate object

off Incoming command from a master: deactivate object

low The controlled switch point function reports a new state: object value below min.
limit

high The controlled switch point function reports a new state: object value above max.

limit

in

The controlled switch point function reports a new state: object value between min
and max (min < value < max).

Table25: SWIP Input Names

The SWIP VFSM has following properties:

I nput
Defines the object used as a base for SWIP, i.e. object observed by the switch point
function. Can be NI, PAR, DAT or UDC VFSM. Note that more than one SWIP

might monitor the same object, so as to obtain more detailed information.

LimitLow
Defines the value below which the switch point function reports state LOW.

LimitHigh
Defines the value above which the switch point function reports state HIGH.

A.14 Table (TAB)
The TAB VFSM is used to provide data of various VFSM objectsto area controlled

device. The following state machine diagram describes the behavior of the TAB
VFSM:

Cmd

a

v f(cmd) = index

Figure22: TAB VFSM

The entry action specifies the index of a certain VFSM of type PAR, DAT or NO, i.e.
TAB works as a multiplexer that maps several VFSMs to one output:

Index

!

VFSM1 —» TAB
VFSM2 —p
Output
VFSMN —»
Figure 23: TAB asMultiplexer

The following properties are defined:
I nput
Definesthe VFSMs used as base for TAB. This property isalist, i.e. asarulethere
are many objects used by TAB.

A.15 Timer (TI)
The Tl VFSM is used to control atimer. The timer isa special counter. So the

behavior of the TI VFSM isthe same as of the CNT VFSM, however there are more
properties required:

Const
Defines the counter limit. Can be a number (e.g. 10) or an NI, DAT or PAR object.

Clock

Defines the clock base, i.e. the time period after which the counter value gets
increased automatically. Can be

58

Appendix A

1ns = 103 sec
10nms = 10°? sec
100ms = 10! sec
1s = 1 sec
Imn = 60 sec
1h = 3600sec

A.16 Up-Down counter (UDC)
The UDC isacounter derived from the DAT VFSM (not CNT). The purpose of this
VFSM isto be able to count in both directions. The data type (format) islong, the
counter has no limit (i.e. a SWIP VFSM isrequired to evaluate its value). Its
behavior is the same as of the DAT VFSM, however in the states INIT, CHANGED
and DEF following incoming commands are possible:

Input Description

clear Execute the input action “ clear counter”

up Execute the input action “increase counter value”
down Execute the input action “ decrease counter value”

Table 26: UDC Input Names

Each of these commands causes the data object owned by the UDC VFSM to go to
the state ‘new_data

The following properties are defined:

Unit
Defines the unit of the type (e.g. V, mA, Bar, etc.). This string is free selectable and
serves the client to display the data appropriately.

Upl nput
Defines the object, which is the source for triggering the counter increment
operation.

UpValue
Defines the value of the object defined in <Uplnput> tag, which increases the
counter.

Downl nput
Defines the object, which is the source for triggering the counter decrement
operation.

DownValue
Defines the value of the object defined in <Downlnput> tag, which decreases the
counte.

Clearlnput
Defines the object, which is the source for triggering the counter clear operation.

ClearValue
Defines the value of the object defined in <Clearlnput> tag, which clears the counter.

A.17 Any data (XDA)
The XDA VFSM isused as an OFUN VFSM support object, by pointing to a
memory segment used by the OFUN VFSM. The XDA VFSM looks the same as the

TAB VFSM. However its output is exactly the same asitsinput, i.e. f(cmd) = cmd.
The following property is defined:

Size
Defines the size of memory block in bytes.

60

Appendix B Units

The unit concept is introduced to allow the access to any VFSM objects. So a unit
defines the I/0O interface to a VFSM. It does not have any other functionality. The
definition of aunit isvery similar to aVFSM, however a unit does not have the
behavior section.

There are two predefined optional unit properties:

Address
Physical address of a unit.

Port
The communication port of aunit.

61

Appendix C Parsing VFSMML

A.01 DOCTYPE Declaration for VFSMML
VFSMML documents should be validated using the XML DTD for VFSMML,
which is shown below in section A.03. Documents using this DTD should contain a
doctype declaration of the form:

<! DOCTYPE vf smm
PUBLI C “http://ww. st at ewor ks. com dtd/vfsnm 1. 0. dtd”
>

The URI might be changed to that of alocal copy of the DTD if required.

A.02 Use of VFSMML without a DTD
If aVFSMML fragment is parsed without aDTD, i.e. asawell-formated XML, it is
the responsibility of the processing application to treat the white space characters
occurring outside of token elements as not significant.

A.03 The VFSMML DTD
The code below is the complete Document Type Definition of VFSMML:

<! ELEMENT vfsmm (Nane?, Description?, VFSM)>
<! ATTLI ST vfsnm
project (true | false) "fal se"
source (default | CDATA) "defaul t™”
>
<! ELEMENT Nane (#PCDATA) >
<! ELEMENT Descri ption (#PCDATA) >
<!l ELEMENT VFSM (Type, Description?, Prefix?, Object*, |Q d*,
State*)>
<! ATTLI ST VFSM
type (vfsm| predefined | unit) "vfsni
>
<! ELEMENT Type (#PCDATA) >
<!l ELEMENT Cbj ect (Nane, Description?, Property*)>
<!l ELEMENT Property (Nane, Val ue)>
<! ELEMENT Val ue (#PCDATA) >
<! ELEMENT Prefix (#PCDATA) >
<IELEMENT 1G d (Nanme, Type?, Description?, Input*, Qutput*)>
<I ELEMENT I nput (Init?, Nane, Val ue)>
<l ELEMENT I nit (#PCDATA) >
<! ELEMENT Qut put (Nane, Val ue)>
<! ELEMENT State (Description?, Nane?, EntryAction*,
Exi t Action*, InputAction*, Transition*)>
<I ATTLI ST State

al ways (true |

>
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

false) "fal se"”
EntryActi on (#PCDATA) >
Exi t Action (#PCDATA) >

I nput Acti on (Condition,
Condition (ci | apply)>
ci (#PCDATA) >
apply ((and |
and EMPTY>

or EMPTY>
Action (#PCDATA) >
Transition (Condition,
St at eNane (#PCDATA) >

Action*)>

or), (ci+ | apply*)+)>

St at eNane, Action*)>

62

Appendix D References

[1] www.stateworks.com

[2] www.w3c.org

63

