

VFSMML 1.0
Virtual Finite State Machine Mark-up Language

Date: 04.04.2004
Release: 1.0

Author: Thomas Wagner

3

Table of Contents
1 INTRODUCTION ...5

1.1 VFSM AND ITS NOTATION ...5
1.2 VIRTUAL ENVIRONMENT...6
1.3 EVENTS AND SIGNAL LIFE TIME ..7
1.4 POSITIVE-LOGIC ALGEBRA..7
1.5 STATE MACHINE EXECUTION MODEL ..8
1.6 SYSTEM OF STATE MACHINES ...8
1.7 REAL TIME DATA BASE (RTDB) ...9
1.8 DESIGN GOALS OF VFSMML...10

2 VFSMML FUNDAMENTALS ...11

2.1 VFSMML OVERVIEW ..11
2.2 VIRTUAL INPUT AND OUTPUT..11
2.3 STATE MACHINE BEHAVIOR ..12
2.4 VFSMML EXAMPLES ..13

2.4.1 Microwave Oven ..13
2.4.2 Simple Master-Slave Configuration...22

2.5 VFSMML SYNTAX AND GRAMMAR...27

3 VFSMML MARKUP...29

3.1 ELEMENT USAGE GUIDE...29
3.1.1 Summary of Elements...29
3.1.2 Overview of Syntax and Usage ..30

<Action> Tag...30
<Condition> Tag..30
<Description> Tag ...31
<EntryAction> Tag ..31
<ExitAction> Tag ..31
<Init> Tag ..31
<Input> Tag ...31
<InputAction> Tag ..33
<IOid> Tag ..33
<Name> Tag ..33
<Object> Tag ...33
<Output> Tag...33
<Prefix> Tag..34
<Property> Tag..34
<State> Tag..35
<StateName> Tag ..35
<Transition> Tag ...36
<Type> Tag ...36
<Value> Tag ..36
<VFSM> Tag...36
<vfsmml> Tag ...36

3.1.3 Element Attributes..37
always ..37
project ..37
source...37
type ..37

3.1.4 Error Message ...37
3.2 LINKED INFORMATION..37

APPENDIX A PREDEFINED DEFAULT VFSM ...41

A.01 ALARM (AL)...42
A.02 COMMAND (CMD) ...44
A.03 COUNTER (CNT) ..45
A.04 DATA (DAT) ..46

4

A.05 DIGITAL INPUT (DI)..48
A.06 DIGITAL OUTPUT (DO) ...49
A.07 EVENT COUNTER (ECNT)...50
A.08 NUMERIC INPUT (NI) ..50
A.09 NUMERIC OUTPUT (NO)..51
A.10 OUTPUT FUNCTION (OFUN) ...52
A.11 PARAMETER (PAR) ..53
A.12 STRING (STR)...54
A.13 SWITCH POINT (SWIP)..56
A.14 TABLE (TAB) ...58
A.15 TIMER (TI)..58
A.16 UP-DOWN COUNTER (UDC) ...59
A.17 ANY DATA (XDA) ..59

APPENDIX B UNITS ...61

APPENDIX C PARSING VFSMML...62

A.01 DOCTYPE DECLARATION FOR VFSMML...62
A.02 USE OF VFSMML WITHOUT A DTD...62
A.03 THE VFSMML DTD ..62

APPENDIX D REFERENCES...63

5

1 Introduction

1.1 VFSM and its Notation
A finite state machine (FSM), sometimes called a finite automaton, is a system
whose condition depends not just on external stimuli, but on the history of those
stimuli. VFSM is a method for specifying FSM as “Platform Independent Models”
in such complete detail that they may be executed directly in a run-time system
without requiring further transformation.

A very simple FSM example is a keyboard, which might be in the normal, initial
state, or the caps-lock state, depending on the number of times the Caps Lock key has
been pressed. Although programmers are often introduced to FSMs in the context of
parsing input text for compilers, the concept is very much more general, and applies
to most “reactive systems” in which internal processes are governed or influenced by
external events. In such systems the FSM does not merely run through a sequence,
producing an end result, but it normally operates throughout the period when the
system is able to function.

The academic definition of an FSM is a “quintuple” A = <Σ, S, S0, δ, F> where Σ is
an alphabet, S is a finite, non-empty set of states, S0 is a set of initial states, δ:S x
Σ→ρ(s) is a transition function, and F is the set of accepting states (perhaps empty).
This is perhaps not too helpful to the practitioner, but quite an amount of theory can
be found in the various text-books if he is mathematically inclined. A key point is,
however, the input alphabet Σ , which defines the stimuli to which the FSM will
react.

A weak point of the above definition is the absence of actions. One might think that
the task of the state machine is to change states until it reaches an end state, and there
is a class of state machines called “deterministic” which need to do this (for instance,
parsing text and reporting when specific sequences are detected). The true task of
state machine is to trigger actions according to situation defined by the present state
and stimuli.

FSMs are normally described in a diagrammatic form, using a circle to represent
each state, and lines with arrow heads to represent transitions between the various
states. The addition of details explaining what will provoke any transition is often
difficult to achieve, and a text description of the FSM is then needed.

As the FSM functions, changing state from time to time, it will provoke actions in
other parts of the system, as required for the specific project. The actions can be
performed by entering a state (entry actions), leaving the state (exit actions) or they
can be triggered by an input (input actions) irrespectively of the state transition. Input
actions and entry actions are the basic actions used by state machine specification. A
state machine which uses only entry actions is called a Moore model. A state
machine which uses only input actions is called a Mealy model. In practice, models
which combine all actions: entry, exit and input are preferable solutions of state
machines.

An FSM will often seem to be very easy to design, and will require a modest number
of states - say about a dozen - to perform its task. Then, when the designer considers
what might go wrong in various ways with the external system, he is forced to add
many states to handle these errors, and the whole FSM becomes very large and

6

difficult to deal with. There is a solution: split the FSM into several different FSMs
which are linked together, and where each one deals with a part of the problem. In
very large systems, one will find that many of the error-handling processes are
almost identical, and this can save time in the development phase by permitting re-
use of some FSM designs.

A definition of a standard notation for state machines is mainly determined by: the
variety of input / output signals and a system of state machines.

This document describes a way in which the FSM concept can be applied in
software, and by which FSM designs can be expressed in full detail in XML format.
A detailed description about FSM and VFSM can be found at [1].

1.2 Virtual environment
Input actions and transitions are controlled by expressions using boolean conditions
and they are due if the expressions are true, as for instance:

if ((Temperature > MAX_TEMPERATURE) && (Timer == Is_Running) ||
Door_Closed)

In the above control expression using an if control statement there are 3 different
input values: Temperature which is a floating-point number, Timer which is a state
(Running) of a timer and Door which is a digital value (On, Off). In most cases, these
signals cannot be used in their original form as variables in a boolean equation
(except Door which is a boolean value); instead their control-relevant (boolean)
values are calculated using comparison, equal, or other operators. In other words, the
boolean condition must be calculated.

The concept which makes it possible to disregard such details when designing FSMs
is that of the “virtual environment” as described below.

We introduce input names to “describe” the control values of the input values.
Instead of calculating the control values of the input values we assume that the
boolean conditions are specified using the names. Of course, “somewhere” the names
have to be continuously updated (calculated) representing always the true situation of
the inputs. The input names create a special environment where all input conditions
are of the same type (just names). We call this environment virtual to underline the
fact that we use there not real signals but only a representation of the control feature
of the signals.

As will be made clear later, the several possible control values of one physical input
can be likened to “states” of a FSM embodying the control-relevant behavior of that
input. This concept is developed further, in terms of “pre-defined VFSM” which
describe inputs and also outputs in VFSMML.

The control values of all input signals define a virtual input. The virtual input
represents complete information about the inputs influencing the state machine
behavior.

Similarly, we introduce output names to “describe” actions to be done as a result of a
state transition or input condition. The true actions are also of several natures, as for
instance: switch on the power, set a voltage to some value, send a message, start a
timer, etc. Using output names to describe actions we define again an environment of

VFSMML Fundamentals

uniform control actions that represent only the essence of the action without their
implementation specifics. Of course, the output names must be “somewhere”
eventually transformed to true output actions. The output names are another part of
the virtual environment.

1.3 Events and signal life time
State machines are triggered by events. The events are changes of input signals.
Some of the signal changes are singular events which can be “forgotten”; we may say
they are consumed by triggering the state machine. Other signals cannot be forgotten
– they just exist until replaced by another value, for instance the temperature has
always some value – it changes only from time to time. The partition between true
events and signals that are always present is definite. Several values are neither true
events nor always present signals; they just live for some time. For instance, the life
time of a command or timeout is not well defined: sometimes these are consumed
immediately, sometimes we use them until they are replaced by other values and
sometimes they have to be “forgotten” by force.

1.4 Positive-logic algebra
The introduction of virtual environment consisting of input and output names gives
us a chance to express logical conditions using only boolean equations. The only
difficulty arises from the fact that as a rule a true control input has more than two
control values. The only input that corresponds to Boolean values: true and false
could be a digital input represented normally by two values: on and off. Other inputs
have several control features:

− a Temperature may be for instance: ok, too_high, very_high, too_low,
unknown,

− a Timer may be for instance: running, over, stopped,
− a Command may be for instance: start, stop, continue, break,
− a Parameter may be for instance: initialized, changed, undefined, defined.

Note that in the examples we say “may be” as there are no absolute definitions of the
control values - they are application dependent. For instance, in one application
temperature: ok and not_ok are sufficient; in another application we could need more
detailed knowledge about the temperature.

Note also that this naming convention allows full description of signal features, for
instance the digital input said above to be a boolean one is in fact a 3-valued signal:
true, false and unknown.

In all cases where an input has more than two control values the usage of the NOT
operator would be ambiguous, for instance, what would mean a negation of
temperature = ok?

Thus, we use a limited Boolean algebra where names are treated as boolean values
but only AND and OR operators are allowed, and of course parentheses..

The expression

if ((Temperature > MAX_TEMPERATURE) && (Timer == Is_Running) ||
Door_Closed)

will be than expressed for instance as:

8

Temperature_very_high & Timer_running | Door_closed

1.5 State machine execution model
Definition of actions suggests already that for any application several state machines
do exist describing exactly the same control behavior. Another factor influencing the
state machine is the execution model. The execution of entry and exit actions is clear
but the execution of input actions must be defined. The same problem exists with
multiple state transitions triggered by a single event. The following state machine
execution model is used:

Figure 1: State machine execution model

A change of virtual input triggers the execution. The conditions of all input actions
are tested and the input actions whose conditions are true are performed. Then, the
transition conditions are tested. This process is prioritized and the first found true
condition causes a transition to the new state in the following sequence: the exit
action is performed, the transition is done and the entry action in the new state is
carried out. Then, again, the transition conditions in the new state are tested. If a true
condition is found, another ‘exit action – transition – entry action’ sequence is done.
This process is continued until there are no more transitions due and the state
machine waits for another change of the virtual input.

1.6 System of state machines
Any non-trivial application requires a complex behavioral model – a single state
machine will be too large, i.e. to complex and difficult to handle. The solution is to
partition the complex model into several smaller state machines which are easier to
define and handle. There are two overlapping topics to be solved by a system of state
machines: the communication among state machines and the overall structure of the
system.

Intuitively, it seems to be obvious that a system of state machines where each state
machine may exchange some information with any other state machine will be very
difficult to control, specify and maintain. On the other hand, the variety of
application tasks requires certain flexibility. The VFSM approach suggests - but does
not impose - a hierarchical structure with master(s) in higher control levels and slaves
in lower levels. The communication among state machines is defined according to
this hierarchical structure: a master sends commands to slaves and uses the slaves’
states as control signals. The following example of a VFSM system of state machines

VFSMML Fundamentals

demonstrates this concept, where for instance the Transport state machine is a slave
of the master Main and a master of the slaves MotorX and MotorY.

 Main

Measure

MotorX MotorY

Cmd

State

State State

Cmd Cmd

State

Cmd

Transport

Figure 2: Master -Slave concept

1.7 Real time data base (RTDB)
The input / output signals are of different types. They carry information like: data,
units, scaling factors, etc. In addition they have control features. For instance:

− A Temperature (actually a number representing sensor voltage) is
characterized by a value, scaling factor, unit and it has a control value, e.g.:
HIGH, OK, LOW.

− A Timer is characterized by a timeout value, clock base, running time and it
has a control value, e.g. OVER, RUNNING, RESET, AND STOPPED. In
addition, it may be started, stopped or reset.

− A Command is a number (integer). It may be an input signal (control value) of
a state machine or it may be an output signal for another state machine.

− A Parameter is characterized by a value, initial value, unit, low limit, high
limit, category and it has a control value, e.g. UNDEFINED, DEFINED,
INIT, CHANGED.

These examples demonstrate that it is possible to define a number of known and
often used objects which have some standard properties. These objects can be used as
a base of a real time data base which takes care of input / output signal management
storing them and filtering the control value from their value. This arrangement can be
used to define a system of automatic creation and actualization of control values.
Such a data base must of course provide a software interface to expand the object
types and to program a link to the true input / output signals and to data processing
software.

10

1.8 Design Goals of VFSMML
VFSMML specifies a XML1 notation for state machines. The main obstacles are the
variety of input / output signals. To standardize the input / output signals we use the
VFSM concept which defines the virtual environment and the positive-logic algebra
for condition expressions. In addition, we assume the usage of the VFSM execution
model. Other elements of the VFSM concept: hierarchical structure and Master-Slave
interface are suggested elements but they are not enforced by the standard.

The standard uses the concept of RTDB defining attributes (properties) of several
objects. This part of the standard is open and can be expanded by new object
definitions if desired.

The Figure 3 below shows how VFSMML fits into the XML concept. All details
about the XML definition can be found in [2].

... MathML SMIL VFSMML

XML

Figure 3: VFSMML within the XML concept

1 For those readers not too familiar with XML we wish to point out that, although XML text is readable by
humans, it is rather cumbersome. In practice, an XML document is commonly read with the aid of a style sheet,
which drastically alters the appearance, and in many cases removes the XML tags. Such a style sheet, as an XLS
file, is for instance available for viewing VFSMML “StateWORKS” files. The full XML format is used in the
examples below, so as to explain the structure of VFSMML documents.

11

2 VFSMML Fundamentals

2.1 VFSMML Overview
This chapter introduces the basic ideas and describes the overall design of VFSMML.
The second section presents a number of motivating examples, to give the reader
something concrete to refer to while reading subsequent chapters of the VFSMML
specification. The final section describes basic features of the VFSMML syntax and
grammar, which apply to all VFSMML mark-up.

The VFSMML mark-up consists of about 23 elements and introduces a small set of
attributes.

2.2 Virtual input and output
The virtual input are values (names) which are used in the state machine specification
to describe behavior conditions, i.e. input actions or transitions. Because the virtual
input names describe the condition of each real input, they can be considered as
being the names of states of VFSM which represent those inputs, for the purposes of
use at higher levels. The virtual outputs are values (names) which are set by the state
machine in certain situations, i.e. when entering a state, exiting a state or as input
actions.

For instance to represent a simple on/off switch the following VFSM can be defined1:

<VFSM>
<Type>switch</Type>
<Object>

<Name>switch1</Name>
</Object>
<IOid>

<Input>
<Name>high</Name>
<Value>1</Name>

</Input>
<Input>

 <Name>low</Name>
 <Value>0</Name>

</Input>
</IOid>
<State>

<Name>HIGH</Name>
</State>
<State>

<Name>LOW</Name>
</State>

</VFSM>

The names “high” and “low” represent the virtual input of the switch VFSM. The
state names “HIGH” and “LOW” can be used as its virtual output.

One can define a range of state machines which are commonly used, to represent
such items as timers, digital input, digital output etc. Those state machines don’t need
to be defined in a VFSMML message, as their virtual inputs and outputs are well
known on the target system. VFSMML defines a set of such known (predefined)

1 This definition is not complete, e.g. it does not contain the behaviour description.

12

VFSM. See Appendix A for more details. To use a predefined VFSM, only its object
name definition is required:

<VFSM type=”predefined”>
<Type>DI</Type>
<Object>

<Name>switch1</Name>
</Object>

</fVFSM>

LOW HIGH

high

low

Figure 4: Digital Input (DI) object state machine

The “DI” VFSM has exactly the same virtual input and output as the previously
defined “switch”.

2.3 State machine behavior
The behavior of a state machine is given by the description of its states. Each state
can set output values (names) based on certain conditions. The conditions are logical
expressions1 created out of the input values (names). Entering or exiting a state can
also be used as a kind of condition to set an output value. For each state any
condition based transitions can also be specified. To support logical expressions to
build conditions, MathML syntax is used.

For instance to specify that the following state machine shall change to state “starting
engine” when the air conditioning is running and the start switch is on, the
description below can be used:

<VFSM>
<Type>Engine</Type>
...
<State>

<Transition>
<Condition>

<apply>
</and>
<ci>aircond_running</ci>
<ci>switch_on</ci>

</apply>
</Condition>
 <StateName>StartingEngine</StateName>

</Transition>
</State>

</VFSM>

1 See also section 1.4 Positive-logic algebra

VFSMML Fundamentals

The input names used for conditions and output names used for actions are based on
objects defined for the given VFSM. For instance the input name ”switch_on” could
be created using the definition given in previous chapter 2.2:

<VFSM>
<Type>Engine</Type>
<Object>

<Name>Engine1</Name>
<Property>

<Name>switch</Name>
<Value>switch1</Value>

</Property>
</Object>
<IOid>

<Name>switch</Name>
<Input>

<Name>switch_on</Name>
<Value>high</Value>

</Input>
</IOid>
...

</VFSM>

2.4 VFSMML Examples

2.4.1 Microwave Oven

Below a simple example of a microwave oven control is presented. The requirements
are as following:

The oven has a ‘Run’ push button to start (apply the power) and a timer that
determines the cooking length. Cooking can be interrupted at any time by opening
the oven door. After closing the door the cooking is continued. Cooking is terminated
when the timer elapses. When the cooking is in progress and also when the door is
opened a lamp inside the oven is switched on, otherwise when the door is closed the
lamp is switched off.

The control system has the following inputs:

Run push button - when activated starts cooking,

Timer - while this runs keep on cooking,

Door sensor - can be true (door closed) or false (door open).

And the following outputs:

Power - can be true (power on) or false (power off),

Lamp - can be true (lamp on) or false (lamp off).

The knobs to set the power and timeout values are irrelevant for the control state
machine. The behavior of the microwave oven control is determined by the Run push
button, Timer and Door sensor.

For this specification the following state transition diagram can be designed:

14

Always

alwaysInit

1

Door_Closed

CookingInterrupted

4

E:

Door_Open

Timeout

Cooking

3

E:

Run & Swip_TimeoutNotZero

Idle

2

E:
I:

Door_Open

CookingCompleted

5

E:
I:

The table below shows the set of objects given for the microwave oven specification.
Based on those objects, a dictionary of input and output names can be defined (see
also 2.2).

Object Name Object Type Description
Timer TI A timer; While this timer runs, keep on cooking
Di_Door DI A digital input (high/low); The sensor which shows if the door is

opened or closed
Di_Run DI A digital input (high/low); The push button to activate the

cooking
Do_Lamp DO The lamp inside the oven
Do_Power DO A digital output (high/low); The power button
Swip_Timeout SWIP Helping object to support the timer

Table 1: Microwave Oven - Object Name Dictionary

Input Name Input Value Object Name
always1
Timeout Over Timer
Door_Closed Low Di_Door
Door_Open High Di_Door
Run High Di_Run
Stop Low Di_Run
TimeoutNotZero In Swip_Timeout

Table 2: Microwave Oven - Input Name Dictionary

Output Name Output Value Object Name
Timer_Reset Reset Timer
Timer_Start Start Timer
Timer_Stop Stop Timer
LampOff Low Do_Lamp
LampOn High Do_Lamp

1 This name (=condition) exists always

E: entry action defined
I: input action defined

VFSMML Fundamentals

PowerOff Low Do_Power
PowerOn High Do_Power
Swip_Timeout_On On Swip_Timeout

Table 3: Microwave Oven - Output Name Dictionary

Besides the transition conditions as shown in the state transition diagram above, an
output table is given to completely define the FSM1:

State Condition Output Description

Init The VFSM starts
here

- In the initialization phase no
actions are required

Entering the state
(entry action)

Swip_Timeout_On The swip object has to be
activated

Door_Closed LampOff

Idle

Door_Open LampOn

Cooking Entering the state
(entry action)

LampOn
PowerOn
Timer_Start

Any time we enter this state,
the timer is started but not
reset

CookingInterrupted Entering the state
(entry action)

PowerOff
Timer_Stop

Any time we enter this state,
the timer is stoped but not
reset

Entering the state
(entry action)

LampOff
PowerOff
Timer_Reset

The timer is reset only when
the cooking is completed

CookingCompleted

Door_Open LampOn

Table 4: Microwave Oven - Output Conditions

The mark-up representation of the microwave oven is given below:

<?xml version="1.0" ?>
<?xml-stylesheet href="vfsmml.xsl" type="text/xsl"?>
<!DOCTYPE vfsmml SYSTEM "vfsmml.dtd" >
<vfsmml project="true">

<Name>MWOven</Name>
<VFSM type="predefined">

<Type>TI</Type>
<Object>

<Name>MW:Ti:CookingTime</Name>
<Property>

<Name>Const</Name>
<Value>MW:Ni:CookingTime</Value>

</Property>
<Property>

<Name>Clock</Name>
<Value>sec</Value>

</Property>
</Object>

</VFSM>

<VFSM type="predefined">

<Type>DI</Type>
<Object>

<Name>MW:Di:Door</Name>
</Object>

1 Actually, there is no standard notation for complete specification of s state machine behavior. For instance
StateWORKS uses a special transition table for this purpose.

16

<Object>
<Name>MW:Di:Run</Name>

</Object>
</VFSM>

<VFSM type="predefined">

<Type>DO</Type>
<Object>

<Name>MW:Do:Lamp</Name>
</Object>
<Object>

<Name>MW:Do:Power</Name>
</Object>

</VFSM>

<VFSM type="predefined">

<Type>NI</Type>
<Object>

<Name>MW:Ni:CookingTime</Name>
<Property>

<Name>Format</Name>
<Value>int</Value>

</Property>
<Property>

<Name>Unit</Name>
<Value>sec</Value>

</Property>
<Property>

<Name>ScaleMode</Name>
<Value>Lin</Value>

</Property>
<Property>

<Name>ScaleFactor</Name>
<Value>1</Value>

</Property>
<Property>

<Name>Offset</Name>
<Value>0</Value>

</Property>
<Property>

<Name>Threshold</Name>
<Value>0</Value>

</Property>
</Object>

</VFSM>

<VFSM type="predefined">
<Type>SWIP</Type>
<Object>

<Name>MW:Swip:Timeout</Name>
<Property>

<Name>Input</Name>
<Value>MW:Ni:CookingTime</Value>

</Property>
<Property>

<Name>LimitLow</Name>
<Value>1</Value>

</Property>
<Property>

<Name>LimitHigh</Name>
<Value>10000</Value>

</Property>

VFSMML Fundamentals

</Object>
</VFSM>

<VFSM type="predefined">

<Type>PAR</Type>
<Object>

<Name>MW:Par:CookingTime</Name>
<Property>

<Name>Category</Name>
<Value>PP</Value>

</Property>
<Property>

<Name>Format</Name>
<Value>int</Value>

</Property>
<Property>

<Name>Unit</Name>
<Value>sec</Value>

</Property>
<Property>

<Name>LimitLow</Name>
<Value>0</Value>

</Property>
<Property>

<Name>LimitHigh</Name>
<Value>0</Value>

</Property>
<Property>

<Name>InitValue</Name>
<Value>0</Value>

</Property>
</Object>

</VFSM>

<VFSM type="vfsm">

<Type>MWOven</Type>
<Prefix>MEA</Prefix>
<Object>

<Name>MW</Name>
<Property>

<Name>MyCmd</Name>
<Value></Value>

</Property>
<Property>

<Name>Timer</Name>
<Value>MW:Ti:CookingTime</Value>

</Property>
<Property>

<Name>Di_Door</Name>
<Value>MW:Di:Door</Value>

</Property>
<Property>

<Name>Di_Run</Name>
<Value>MW:Di:Run</Value>

</Property>
<Property>

<Name>Do_Lamp</Name>
<Value>MW:Do:Lamp</Value>

</Property>
<Property>

<Name>Do_Power</Name>
<Value>MW:Do:Power</Value>

</Property>

18

<Property>
<Name>Swip_Timeout</Name>
<Value>MW:Swip:Timeout</Value>

</Property>
</Object>

<IOid>

<Name>MyCmd</Name>
<Type>CMD-IN</Type>

</IOid>
<IOid>

<Name>Timer</Name>
<Type>TI</Type>
<Input>

<Name>Timeout</Name>
<Value>OVER</Value>

</Input>
<Output>

<Name>Timer_Reset</Name>
<Value>Reset</Value>

</Output>
<Output>

<Name>Timer_Start</Name>
<Value>Start</Value>

</Output>
<Output>

<Name>Timer_Stop</Name>
<Value>Stop</Value>

</Output>
</IOid>
<IOid>

<Name>Di_Door</Name>
<Type>DI</Type>
<Input>

<Name>Door_Closed</Name>
<Value>LOW</Value>

</Input>
<Input>

<Name>Door_Open</Name>
<Value>HIGH</Value>

</Input>
</IOid>
<IOid>

<Name>Di_Run</Name>
<Type>DI</Type>
<Input>

<Name>Di_Run</Name>
<Value>HIGH</Value>

</Input>
<Input>

<Name>Di_Stop</Name>
<Value>LOW</Value>

</Input>
</IOid>
<IOid>

<Name>Do_Lamp</Name>
<Type>DO</Type>
<Output>

<Name>Do_LampOff</Name>
<Value>Low</Value>

</Output>
<Output>

VFSMML Fundamentals

<Name>Do_LampOn</Name>
<Value>High</Value>

</Output>
</IOid>
<IOid>

<Name>Do_Power</Name>
<Type>DO</Type>
<Output>

<Name>Do_PowerOff</Name>
<Value>Low</Value>

</Output>
<Output>

<Name>Do_PowerOn</Name>
<Value>High</Value>

</Output>
</IOid>
<IOid>

<Name>Swip_Timeout</Name>
<Type>SWIP</Type>
<Input>

<Name>Swip_TimeoutNotZero</Name>
<Value>IN</Value>

</Input>
<Output>

<Name>Swip_Timeout_On</Name>
<Value>On</Value>

</Output>
</IOid>

<State>

<Description>Usually, the state machine goes
directly to its Idle state.</Description>

<Name>Init</Name>
<Transition>

<Condition>
<ci>always</ci>

</Condition>
<StateName>Idle</StateName>

</Transition>
</State>
<State>

<Description>Entering the state the state machine
switches off the power and stops the timer. The cooking
continues when the door is closed.</Description>

<Name>CookingInterrupted</Name>
<EntryAction>Do_PowerOff</EntryAction>
<EntryAction>Timer_Stop</EntryAction>
<Transition>

<Condition>
<ci>Door_Closed</ci>

</Condition>
<StateName>Cooking</StateName>

</Transition>
</State>
<State>

<Description> Entering the state the state machine
switches on the lamp and applies the power. In addition,
it starts the timer which timeout determines the cooking
time.

The cooking can be interrupted at any time by

opening the door.</Description>
<Name>Cooking</Name>

20

<EntryAction>Do_LampOn</EntryAction>
<EntryAction>Do_PowerOn</EntryAction>
<EntryAction>Timer_Start</EntryAction>
<Transition>

<Condition>
<ci>Door_Open</ci>

</Condition>
<StateName>CookingInterrupted</StateName>

</Transition>
<Transition>

<Condition>
<ci>Timeout</ci>

</Condition>
<StateName>CookingCompleted</StateName>

</Transition>
</State>
<State>

<Description> Entering the state the Run signal is
cleared. Opening and closing the door switches the lamp
on and off. If the Run signal becomes active and the
Timeout value is not zero the state machine goes to the
state Cooking.</Description>

<Name>Idle</Name>
<EntryAction>Swip_Timeout_On</EntryAction>
<InputAction>

<Condition>
<ci>Door_Closed</ci>

</Condition>
<Action>Do_LampOff</Action>

</InputAction>
<InputAction>

<Condition>
<ci>Door_Open</ci>

</Condition>
<Action>Do_LampOn</Action>

</InputAction>
<Transition>

<Condition>
<apply>

<and/>
<ci>Di_Run</ci>
<ci>Swip_TimeoutNotZero</ci>

</apply>
</Condition>
<StateName>Cooking</StateName>

</Transition>
</State>
<State>

<Description>Entering the state the state machine
switches off the lamp and the power. In addition, it
stops the timer. Opening the door switches the lamp on
and the state machine returns to the Idle
state.</Description>

<Name>CookingCompleted</Name>
<EntryAction>Do_LampOff</EntryAction>
<EntryAction>Do_PowerOff</EntryAction>
<EntryAction>Timer_Reset</EntryAction>
<InputAction>

<Condition>
<ci>Door_Open</ci>

</Condition>
<Action>Do_LampOn</Action>

VFSMML Fundamentals

</InputAction>
<Transition>

<Condition>
<ci>Door_Open</ci>

</Condition>
<StateName>Idle</StateName>

</Transition>
</State>

</VFSM>

<VFSM type="unit">

<Type>DI16P</Type>
<Prefix>DI1</Prefix>
<Object>

<Name>MW:DI16P</Name>
<Property>

<Name>CommPort</Name>
<Value></Value>

</Property>
<Property>

<Name>PhysAddr</Name>
<Value>1</Value>

</Property>
<Property>

<Name>Di0</Name>
<Value>MW:Di:Door</Value>

</Property>
<Property>

<Name>Di1</Name>
<Value>MW:Di:Run</Value>

</Property>
</Object>

<IOid>

<Name>Di0</Name>
<Type>DI</Type>

</IOid>
<IOid>

<Name>Di1</Name>
<Type>DI</Type>

</IOid>
</VFSM>

<VFSM type="unit">

<Type>DO16P</Type>
<Prefix>DO1</Prefix>

<Object>
<Name>MW:DO16P</Name>
<Property>

<Name>CommPort</Name>
<Value></Value>

</Property>
<Property>

<Name>PhysAddr</Name>
<Value>3</Value>

</Property>
<Property>

<Name>Do0</Name>
<Value>MW:Do:Power</Value>

</Property>
<Property>

<Name>Do1</Name>
<Value>MW:Do:Lamp</Value>

22

</Property>
</Object>
<IOid>

<Name>Do0</Name>
<Type>DO</Type>

</IOid>
<IOid>

<Name>Do1</Name>
<Type>DO</Type>

</IOid>
</VFSM>

<VFSM type="unit">

<Type>NI4</Type>
<Prefix>NI4</Prefix>
<Object>

<Name>MW:NI4</Name>
<Property>

<Name>CommPort</Name>
<Value></Value>

</Property>
<Property>

<Name>PhysAddr</Name>
<Value>5</Value>

</Property>
<Property>

<Name>Ni0</Name>
<Value>MW:Ni:CookingTime</Value>

</Property>
</Object>
<IOid>

<Name>Ni0</Name>
<Type>NI</Type>

</IOid>
</VFSM>

</vfsmml>

2.4.2 Simple Master-Slave Configuration

The following example shows how to present dependencies between various state
machines. The predefined VFSM “CMD” is used as an input and as an output and is
designed for inter-VFSM communication (see also chapter A.02 in Appendix A).

Always

Start

Init

1

SlaveVFSM_Init

Start

2

E:

EntryAction: SlaveCmd Start

VFSMML Fundamentals

Figure 5: Master VFSM

Always

Start

Init

1

E:
timer_OVER

Run

2

E:

Figure 6: Slave FVSM

Master

(Start_VFSM)

Slave2

(Start_SlaveVFSM)

Slave1

(Start_SlaveVFSM)

Figure 7: Dependencies between Master and Slave

The table below shows the set of objects given for the master VFSM specification.
Based on those objects, again, a set of input and output names can be defined.

Object Name Object Type Description
MyCmd CMD User command (incoming command)
SlaveVFSM VFSM Slave VFSM definition
SlaveCmd CMD Command to the slave VFSM (outgoing command

Table 5: Master-Slave - Object Name Dictionary

Input Name Input Value Object Name
Start 1 MyCmd
SlaveVFSM_Init Init (Slave state) SlaveVFSM

Table 6: Master-Slave - Input Name Dictionary

Command

Master sends com-
mands to its slaves

Slave 1 shows its
states to Master

24

Output Name Output Value Object Name
SlaveCmd_Start 1 SlaveCmd

Table 7: Master-Slave - Output Name Dictionary

The table below shows the set of objects given for the slave VFSM specification.
Both slave VFSM instances are of the same VFSM type. Based on those objects,
again, a set of input and output names can be defined.

Object Name Object Type Description
MyCmd CMD-IN Command from master
timer TI A timer

Table 8: Master-Slave - Object Name Dictionary

Input Name Input Value Object Name
Start 1 MyCmd
timer_OVER OVER timer

Table 9: Master-Slave - Input Name Dictionary

Output Name Output Value Object Name
timer_ResetStart ResetStart timer
timer_Stop Stop timer

Table 10: Master-Slave - Output Name Dictionary

The mark-up representation of the master-slave example is given below:

<?xml version="1.0" ?>
<?xml-stylesheet href="vfsmml.xsl" type="text/xsl"?>
<!DOCTYPE vfsmml SYSTEM "vfsmml.dtd" >
<vfsmml project="true">

<Name>MasterSlave</Name>
<VFSM type="predefined">

<Type>CMD</Type>
<Object>

<Name>Master:MyCmd</Name>
<Property>

<Name>Type</Name>
<Value></Value>

</Property>
</Object>
<Object>

<Name>Slave:MyCmd</Name>
<Description>start_slave vfsm</Description>
<Property>

<Name>Type</Name>
<Value></Value>

</Property>
</Object>

</VFSM>

<VFSM type="predefined">

<Type>TI</Type>
<Object>

<Name>Timer1</Name>
<Property>

<Name>Const</Name>
<Value>10</Value>

VFSMML Fundamentals

</Property>
<Property>

<Name>Clock</Name>
<Value>sec</Value>

</Property>
</Object>
<Object>

<Name>Timer2</Name>
<Property>

<Name>Const</Name>
<Value>20</Value>

</Property>
<Property>

<Name>Clock</Name>
<Value>sec</Value>

</Property>
</Object>

</VFSM>

<VFSM type="vfsm">

<Type>Start_VFSM</Type>
<Prefix>MAS</Prefix>
<Object>

<Name>Master</Name>
<Property>

<Name>MyCmd</Name>
<Value>Master:MyCmd</Value>

</Property>
<Property>

<Name>SlaveVFSM</Name>
<Value>Slave1</Value>

</Property>
<Property>

<Name>SlaveCmd</Name>
<Value>Slave:MyCmd</Value>

</Property>
</Object>

<IOid>

<Name>MyCmd</Name>
<Type>CMD-IN</Type>
<Input>

<Name>Start</Name>
<Value>1</Value>

</Input>
</IOid>
<IOid>

<Name>SlaveVFSM</Name>
<Type>VFSM</Type>
<Description>start_slave vfsm</Description>

</IOid>
<IOid>

<Name>SlaveCmd</Name>
<Type>CMD-OUT</Type>
<Description>start_slave vfsm</Description>
<Output>

<Name>SlaveCmd_Start</Name>
<Value>1</Value>

</Output>
</IOid>

<State>

<Name>Init</Name>

26

<Transition>
<Condition>

<ci>Start</ci>
</Condition>
<StateName>Start</StateName>

</Transition>
</State>
<State>

<Name>Start</Name>
<EntryAction>SlaveCmd_Start</EntryAction>
<Transition>

<Condition>
<ci>SlaveVFSM_Init</ci>

</Condition>
<StateName>Init</StateName>

</Transition>
</State>

</VFSM>

<VFSM type="vfsm">

<Type>Start_SlaveVFSM</Type>
<Prefix>SLA</Prefix>
<Object>

<Name>Slave1</Name>
<Description>start_slave vfsm</Description>
<Property>

<Name>MyCmd</Name>
<Value>Slave:MyCmd</Value>

</Property>
<Property>

<Name>timer</Name>
<Value>Timer1</Value>

</Property>
</Object>
<Object>

<Name>Slave2</Name>
<Property>

<Name>MyCmd</Name>
<Value>Slave:MyCmd</Value>

</Property>
<Property>

<Name>timer</Name>
<Value>Timer2</Value>

</Property>
</Object>

<IOid>

<Name>MyCmd</Name>
<Type>CMD-IN</Type>
<Input>

<Name>Start</Name>
<Value>1</Value>

</Input>
</IOid>
<IOid>

<Name>timer</Name>
<Type>TI</Type>
<Input>

<Name>timer_OVER</Name>
<Value>OVER</Value>

</Input>
<Output>

VFSMML Fundamentals

<Name>timer_ResetStart</Name>
<Value>ResetStart</Value>

</Output>
<Output>

<Name>timer_Stop</Name>
<Value>Stop</Value>

</Output>
</IOid>

<State>

<Name>Init</Name>
<EntryAction>timer_Stop</EntryAction>
<Transition>

<Condition>
<ci>Start</ci>

</Condition>
<StateName>Run</StateName>

</Transition>
</State>
<State>

<Name>Run</Name>
<EntryAction>timer_ResetStart</EntryAction>
<Transition>

<Condition>
<ci>timer_OVER</ci>

</Condition>
<StateName>Init</StateName>

</Transition>
</State>

</VFSM>
</vfsmml>

2.5 VFSMML Syntax and Grammar
VFSMML is an application of Extensible Markup Language (XML), and as such its
syntax is governed by the rules of XML syntax, and its grammar is in part specified
by the Document Type Definition (DTD). In other words, the details of using tags,
attributes, entity references and so on are defined in the XML language specification
and the details about VFSMML element and attribute names, which elements can be
nested inside each other, and so on are specified in the VFSMML DTD in A.03.

29

3 VFSMML Markup

3.1 Element Usage Guide

3.1.1 Summary of Elements

The Figure 8 below gives an overview about all defined tags and their hierarchy. All
bold italic tags can appear many times inside their parent tags. The (o) means, the
element is optional, (a) means there is an attribute defined.

The <Condition> tag can be a single name or a logical expression given using
notation as defined in MathML. Here only following tags are used: <apply>, <and>,
<or> and <ci>. In the following chapter more accurate description is given.

The dependencies between certain tags are explained in section 3.2.

vfsmml (a)
Name (o)
Description (o)
VFSM (a)

Type
Description (o)
Prefix (o)
Object (o)

Name
Description (o)
Property (o)

Name
Value

IOid (o)
Name
Type
Description (o)
Input (o)

Init (o)
Name
Value

Output (o)
Name
Value

State (a,o)
Description (o)
Name (o)
EntryAction (o)
ExitAction (o)
InputAction (o)

Condition
Action

Transition (o)
Condition
StateName
Action (o)

Figure 8 VFSMML tags and their hierarchy

30

3.1.2 Overview of Syntax and Usage

In the following all defined tags are listed alphabetically.

 <Action> Tag
The VFSM virtual output.

Each output name is defined in the <IOid> tag section and can be used in the <State>
tag section as <Action>. Each <Action> tag value must be first defined in the <IOid>
tag section (IOid – Output – Name) before it can be used. The <Action> tag is
obligatory in the <InputAction> tag section and optional in the <Transition> tag
section.

Example:

In following the action “Start” will be set when entering the state or when receiving
the command “CmdStart”.

<IOid>
...
<Output>

<Name>Start</Name>
<Value>HIGH</Value>

</Output>
</IOid>
...
<State>

<EntryAction>Start</EntryAction>
<InputAction>

<Condition>
<ci>CmdStart</ci>

</Condition>
<Action>Start</Action>

</InputAction>
</State>

 <Condition> Tag
The definition of conditions to perform a transition or execute an input action.

The value is a logical expression using notation as defined in MathML. The
<Condition> tag is obligatory in the <InputAction> and <Transition> tag section.

Examples:

1. Single input condition. Do something when the input name “Start” is set:
<Condition>

<ci>Start</ci>
</Condition>

2. OR condition. Do something, when “Stop” or “Door_Open” is set:
<Condition>

<apply>
</or>
<ci>Stop</ci>
<ci>Door_Open</ci>

</apply>
</Condition>

VFSMML MarkUp

3. OR and AND condition. Do something, when “Start” and “Door_Open” or
“Start” and “Timer_Over” is set, i.e. “Start AND (Door_Open OR
Time_Over)”:

<Condition>

<apply>
</and>
<ci>Start</ci>
<apply>

</or>
<ci>Door_Open</ci>
<ci>Timer_Over</ci>

</apply>
</apply>

</Condition>

 <Description> Tag
An optional comment allowed for certain tags.

Following tags can contain the optional <Description> sub tag: <vfsmml>, <VFSM>,
<Object>, <IOid> and <State>.

 <EntryAction> Tag
VFSM output name, set when entering a state.

See <Action> tag for more information. <EntryAction> is an optional tag in the
<State> tag section only. Any number of <EntryAction> tags is allowed inside a
<State> tag.

 <ExitAction> Tag
VFSM output name, set when exiting a state.

See <Action> tag for more information. <ExitAction> is an optional tag in the
<State> tag section only. Any number of <ExitAction> tags is allowed inside a
<State> tag.

 <Init> Tag
Specifies input names valid after the VFSM start-up.

Can be “true” or “false”. The default value is “false”. If “true” is set, the current
name is active at the VFSM start-up. <Init> is an optional tag inside the <Input> tag
section only. For instance the name “always” should always be active as per
definition.

 <Input> Tag
An input name definition based on possible values of a given Object.

There is any number of <Input> tags allowed inside an <IOid> tag. Each <Input> tag
contains three sub tags: <Init> (optional, default value is “false”), <Name> and
<Value>.

Examples:

32

1. Input based on a predefined VFSM (DI). The instance DI_1 is created on the
type DI. For this instance the name “door_closed” is defined to represent the
value “LOW” of the IOid “Di_door” (see also definition of DI in Appendix A).

<VFSM type=”predefined”>

<Type>DI</Type>
<Object>

<Name>DI_1</Name>
</Object>

</VFSM>
<VFSM>

<Name>MyVFSM</Name>
<Object>

<Name>MyVFSM1</Name>
<Property>

<Name>Di_door</Name>
<Value>DI_1</Value>

</Property>
</Object>
<IOid>

<Name>Di_door</Name>
<Type>DI</Type>
<Input>

<Name>door_closed</Name>
<Value>LOW</Value>

</Input>
</IOid>
...

</VFSM>

2. Input based on a VFSM. The instance vfsm_A1 is created on the type
vfsm_type_A. For this instance the name “slave_stop” is defined to represent
the state “stop” of the vfsm_A1 VFSM.

<VFSM>

<Type>vfsm_type_A</Type>
<Object>

<Name>vfsm_A1</Name>
</Object>
<State>start</State>
<State>stop</State>

</VFSM>
<VFSM>

<Type>vfsm_type_B</Type>
<Object>

<Name>vfsm_B1</Name>
<Property>

<Name>A1</Name>
<Value>vfsm_A1</Value>

</Property>
</Object>
<IOid>

<Name>A1</Name>
<Type>vfsm_type_A</Type>
<Input>

<Name>slave_stop</Name>
<Value>stop</Value>

</Input>
</IOid>
...

</VFSM>

VFSMML MarkUp

 <InputAction> Tag
VFSM output name, set when certain conditions (input names) are given.

One <InputAction> tag contains two mandatory sub tags: <Condition> and
<Action>. Any number of <InputAction> tags is allowed inside each <State> tag.
The <InputAction> tag is optional and possible only inside the <State> tag.

 <IOid> Tag
An identifier of any kind of VFSM type used inside certain VFSM (Object –
Property – Name).

Any number of <IOid> tags is allowed inside a <VFSM> tag. One <IOid> tag may
contain the following sub tags: <Name>, <Type>, <Description>, <Input> and
<Output>. The <Input> and <Output> tags define the names of its possible values.
The <Type> specifies the object type used for this definition (i.e. another VFSM or
predefined VFSM).

Example:

An IOid based on a DI object. For instance the name “on” is defined to represent the
value “HIGH” (see also definition of DI in Appendix A).

<VFSM>
<IOid>

<Name>Switch</Name>
<Type>DI</Type>
<Input>

<Name>on</Name>
<Value>HIGH</Value>

</Input>
</IOid>

</VFSM>

 <Name> Tag
Defines the name of the content specified inside its parent tag.

The <Name> tag is used with the following tags: <vfsmml>, <Object>, <Property>,
<IOid>, <Input>, <Output> and <State>. Each <vfsmml> has a unique name. Each
<Object> has a unique name inside its <vfsmml> tag. Each <IOid> , <Input>,
<Output> and <State> has a unique name inside its <VFSM> tag.

 <Object> Tag
Creates and describes the properties of an incarnation of a VFSM.

The <Object> tag contains the following sub tags: <Name>, <Description> and
<Property>. Object properties depend on its VFSM. In Appendix A all predefined
VFSM and their properties for a default VFSMML document are listed. The
<Object> tag is mandatory inside the <VFSM> tag, but any number of <Object> tags
is allowed. See also section 3.2 for more information about tag dependencies.

 <Output> Tag
An output name definition based on possible values of the used object.

34

There is any number of <Output> tags allowed inside an <IOid> tag. Each <Output>
tag contains two sub tags: <Name> and <Value>.

Examples:

Output based on a predefined VFSM (DO). The instance DO_1 is created on the type
DO. For this instance the name “close_door” is defined to represent the value
“HIGH” of the IOid “door” (see also definition of DO in Appendix A).

<VFSM type=”predefined”>
<Type>DO</Type>
<Object>

<Name>DO_1</Name>
</Object>

</VFSM>

<VFSM>

<Type>MyVFSM</Type>
<Object>

<Name>MyVFSM1</Name>
<Property>

<Name>door</Name>
<Value>DO_1</Value>

</Property>
</Object>
<IOid>

<Name>door</Name>
<Type>DO</Type>
<Output>

<Name>close_door</Name>
<Value>HIGH</Value>

</Output>
</IOid>

</VFSM>

 <Prefix> Tag
Prefix of a type definition.

Each VFSM type (besides predefined VFSM) has a unique three-letter prefix inside
its <vfsmml> tag.

 <Property> Tag
Defines a property of a VFSM.

Properties are parameters which stay constant at least for the execution time of the
entire system. Properties define also all the objects on which the current VFSM is
based (other VFSMs or predefined VFSMs). There is any number of <Property>
tags allowed inside an <Object> tag.

Examples:

1. Constant parameter: definition of scanner step-motor properties: the motor is
only responsible for the x-direction and the maximum number of steps is 100.

<VFSM>

<Type>motor</Type>
<Object>

VFSMML MarkUp

<Name>motor_x</Name>
<Property>

<Name>max_x</Name>
<Value>100</Value>

</Property>
<Property>

<Name>max_y</Name>
<Value>0</Value>

</Property>
</Object>
...

</VFSM>

2. Objects on which the current VFSM is based: the VFSM contains a timer and
is used two times in the system. Each VFSM copy contains an own timer (TI
object) with different properties:
<VFSM type=”predefined”>

<Type>TI</Type>
<Object>

<Name>timer1</Name>
...

</Object>
<Object>

<Name>timer2</Name>
...

</Object>
</VFSM>
...
<VFSM>

<Type>Slave</Type>
<Object>

<Name>Slave1</Name>
<Property>

<Name>timer</Name>
<Value>timer1</Value>

</Property>
</Object>
<Object>

<Name>Slave2</Name>
<Property>

<Name>timer</Name>
<Value>timer2</Value>

</Property>
</Object>
...

</VFSM>

 <State> Tag
Describes one state of a VFSM.

There is any number of <State> tags allowed inside a <VFSM> tag. One <State> tag
contains following sub tags: <Description>, <Name>, <EntryAction>, <ExitAction>,
<InputAction> and <Transition>. The <State> tag contains one mandatory attribute
“always”, which can be “true” or “false”. The default value of this attribute is “false”.

 <StateName> Tag
One state name from the set of all states of the current VFSM.

See also section 3.2 for more information about tag dependencies.

36

 <Transition> Tag
The state transition definition.

A <Transition> tag is optional and contains three sub tags: <Condition>, <Action>
(optional) and <StateName>. Any number of <Transition> tags is allowed inside a
<State> tag.

 <Type> Tag
Defines a type name of a VFSM.

Based on this name any number of instances of a given VFSM can be defined. The
name of an object is then an instance of this type. The <Type> tag is mandatory.

For instance, a system uses 10 timers of type TI. Then there are 10 objects defined:

<VFSM type=”predefined”>
<Type>TI</TI>
<Object>

<Name>timer1</Name>
</Object>
<Object>

<Name>timer2</Name>
</Object>
...
<Object>

<Name>timer10</Name>
</Object>

</VFSM>

 <Value> Tag
The value represented by the name of <Property>, <Input> or <Output> tag.

For <Input> and <Output>, the value must be from the range of values defined in the
appropriate <VFSM> tag. For <Property> of a predefined VFSM only supported
property values (see predefined VFSM definitions in Appendix A) are allowed. For a
<Property> section of a new VFSM tag any values are possible.

 <VFSM> Tag
Announces a VFSM definition.

There is any number of <VFSM> tags possible inside a <vfsmml> tag. Each
<VFSM> tag contains following sub tags: <Type>, <Object>, <Description>,
<Prefix>, <IOid> and <State>. The <VFSM> tag contains one mandatory attribute
“type”, which can be “vfsm”, “predefined” or “unit”. The default value of this
attribute is “vfsm”. For attributes “predefined” and “unit” the sub-tag <State> is not
allowed.

 <vfsmml> Tag
The root VFSMML tag.

The <vfsmml> tag includes a VFSM or a system of VFSMs. Each <vfsmml> tag
contains following sub tags: <Name>, <Description> and <VFSM>. This is the top
level VFSMML tag. The <vfsmml> tag contains two mandatory attributes:

“project” – can be “true” or “false”. The default value of this attribute is “false”.

VFSMML MarkUp

“source” – can be “default” or any other string. The default value is “default”. This
attribute is used to announce predefined object types used later in the VFSM
specification. Appendix A on page 41 lists all predefined types in a “default” system.

3.1.3 Element Attributes

In following all defined attributes are listed alphabetically:

 always
The <State> tag contains the attribute “always” which is usually set to false and
means a normal state of an FSM. One of the states of a FSM can contain
always=”true”. This defines not a state of the affected FSM, but is a definition of
input actions valid for each state of this FSM (i.e. input actions always set). Such an
“always-state” does not have a name or entry/exit action, nor it is possible to define a
transition to or from this state.

 project
The <vfsmml> tag contains the attribute “project”, which allows to distinguish
between complete independent project specifications (value “true”) and single VFSM
specifications (value “false”).

 source
The <vfsmml> tag contains the attribute “source”, which specifies the source of the
predefined types. The default value is “default”. Appendix A describes all predefined
types in a default system. There are any values allowed, however the target system
has to know the VFSM definition of the predefined VFSM used, to be able to extract
the VFSMML data.

 type
The <VFSM> tag contains the attribute “type”, which allows to distinguish between
new VFSM definitions (value “vfsm”), known predefined VFSM definitions (value
“predefined”) and simple unit definitions (value “unit”).

3.1.4 Error Message

There is a need for one error message in case the value of the source attribute is
unknown. Then the VFSMML message can not be correctly interpreted. The receiver
of a VFSMML definition containing an undefined ‘source’ attribute shall return an
empty <vfsmml> tag where the value of the source attribute is set to “unknown”:

<vfsmml source=”unknown”></vfsmml>

3.2 Linked Information
Some VFSMML tags define values, which are linked together. Following Table 11
gives an overview of tags which uses names previously defined:

38

Tag Linked to Description

<StateName> <State> → <Name> Specifies a name of a state previously defined

<Action>,
<EntryAction>,
<ExitAction>,
<InputAction>

<Output> → <Name> Specifies a name of an output previously defined

<Condition> <Input> → <Name> Specifies a name of an input previously defined.
Also a set of input names all connected with an
OR or AND is possible. See <Condition> tag
description on page 30 for more details

Table 11: Linked Tags

There is also some logical information linked together:

The <VFSM>-<Object>-<Name> is one (of many possible) incarnations of the
<VFSM>-<Type>. In its list of properties, first of all, any <IOid>-<Name> has to be
defined, i.e. the <Object>-<Name> of the VFSM on which this specific <IOid>-
<Name> is based. The following example shall explain this dependency:

<VFSM>
<Type>MyVFSM</Type>
<Object>

<Name>NewVFSM1</Name>
<Property>

<Name>timer</Name>
<Value>timer1</Value>

</Property>
<Property>

<Name>slave</Name>
<Value>SlaveVFSM1</Value>

</Property>
<Property>

<Name>switch</Name>
<Value>switch3</Value>

</Property>
</Object>
<Object>

<Name>NewVFSM2</Name>
<Property>

<Name>timer</Name>
<Value>timer2</Value>

</Property>
<Property>

<Name>slave</Name>
<Value>SlaveVFSM1</Value>

</Property>
<Property>

<Name>switch</Name>
<Value>switch2</Value>

</Property>
</Object>
<IOid>

<Name>timer</Name>
...

</IOid>
<IOid>

<Name>slave</Name>
...

</IOid>

This is the first
incarnation of the VFSM
type ‘MyVFSM’

This is the second
incarnation of the VFSM
type ‘MyVFSM’

Each of the IOid names must
appear in each incarnation of
this VFSM, to specify the
object on which it is based

These properties define
all objects on which any
of the IOid name is
created.

VFSMML MarkUp

<IOid>
<Name>switch</Name>
...

</IOid>
</VFSM>

In other words, each VFSM has its type (VFSM – Type). Based on this type any
number of incarnations is possible (VFSM – Object – Name). Each incarnation uses
own incarnations of other VFSM, e.g. a “switch” is a typical VFSM used by other
VFSM. The description of how to use the foreign VFSM is given in the proper IOid
section (VFSM – IOid – Name).

41

Appendix A Predefined default VFSM

If no special “source” attribute is given, the default

source=”default”

is used. The Table 12 below gives an overview of all predefined VFSM, their
definitions are presented in the following sub-sections.

Type Input Values Output Values
AL - Coming, Going, Staying
CMD Any positive number >0 Clear (=0), any positive number > 0
CNT RUN, STOP, RESET, OVER, OVERSTOP Start, Stop, Reset, ResetStart, Inc, Dec
DAT UNDEF, DEF, CHANGED, INIT -
DI HIGH, LOW -
DO - High, Low
ECNT RUN, STOP, RESET, OVER, OVERSTOP Start, Stop, Reset, ResetStart, Inc, Dec
NI UNDEF, DEF, CHANGED, INIT -
NO - Off, On, Set
OFUN Any positive number Any positive number
PAR UNDEF, DEF, CHANGED, INIT -
STR ON, OFF, SET, MATCH, NOMATCH Off, Init, Match, Nomatch, Def
SW IP LOW, IN, HIGH, OFF on, off
TAB - Any positive number
TI RUN, STOP, RESET, OVER, OVERSTOP Start, Stop, Reset, ResetStart
UDC UNDEF, DEF, CHANGED, INIT Clear, Up, Down
XDA Any positive number Any positive number

Table 12: Predefined VFSM and their value ranges (source=”default”)

Each predefined VFSM contains one or more properties. Those are constant
parameters which can only be changed during VFSM setup, but not while run-time.

Some of the predefined objects are objects defined to exchange control information
with the real world or with other state machines. In particular those objects are: DI,
DO, NI, NO, TAB, CMD and XDA. Those objects are defined using the master slave
concept. The hierarchy begins with the VFSM control system on top and ends with
the real controlled system on the bottom as shown in the diagrams below.

In Figure 9 the objects DI, DO, NI, NO and TAB are slaves from the VFSM control
system and masters from the real controlled system point of view. Each master sends
commands to its slave. Each slave shows his current state to its master. For instance
the DI VFSM is controlled by the states of the real existing device connected to it
(e.g. a switch is on, a flag is present etc.) and presents its states to the higher layers of
the VFSM control system. The DO VFSM is controlled by the commands from the
higher layer of the VFSM control system and sends own commands to the real
existing device connected to it (e.g. to a switch).

42

VFSM control system (Master)

DI DO NI NO TAB

Real controlled system (Slave)

Figure 9. Objects defined to exchange control information with the real world

Figure 10 shows the principle of the CMD object used to exchange data between
state machines.

Master VFSM

CMD

Slave VFSM

Figure 10. CMD object defined to exchange control information between state machines

A.01 Alarm (AL)
The AL VFSM controls an alarm queue. The following state machine diagram
describes the behavior of the AL VFSM:

Appendix A

Always

stay

com

NONE

1

E: X:

ack

STAYING

2

ack

go

COMING

3

go

ACKN.

4

E: X:

ack

com

COM_GO

5

X:

ack

com

GOING

6

I:

Figure 11: AL VFSM

The actions Insert, Remove and Maintain alarm are explained in the table below. E:
means an entry action, X: means an exit action, I: means an input action.

Action Description

Insert alarm Add current alarm to the top of the alarm queue

Remove alarm Remove current alarm from the alarm queue

Maintain alarm Move the current alarm to the top of the alarm queue

Table 13: AL Output Names

The input names used for state transitions:

Input Name Description

Coming Erroneous situation has occurred (incoming command)

Going Erroneous situation has gone (incoming command)

Staying Erroneous situation has occurred. The situation can not be solved (incoming
command)

Ack Situation acknowledged (incoming command)

Table 14: Al Input Names

The AL VFSM has following properties:

Insert alarm

Maintain alarm

Remove alarm

If coming then maintain alarm

Remove alarm

Insert alarm

44

 Category
Defines the alarm severity. Can be any number ≥ 0..65535. Some alarms depend on
the current state and input name. The table below specifies the meaning of special
categories:

Input Name Category
Coming, Staying Going, Ack, None

1 Write Error to EventLog Write Info to EventLog

2 Write Warning to EventLog Write Info to EventLog

4 Write Info to EventLog Write Info to EventLog

other Do not change EventLog (user defined)

Table 15: AL Alarm Severity

 Text

Defines the alarm text. To support different languages and references to other data
objects two special identifiers are defined:

%<ObjectName>1 - this string in the alarm text defines a reference to a data object.

For instance

Val. is too high: %NiVoltage V

will be displayed as

Val. is too high: 8.9 V

if an ObjectName NiVoltage is defined and its value at the moment of the alarm
generation is 8.9.

IDS_<TextId> - this string in the alarm text will be replaced by a string stored in a
resource file used with the system. For instance

 IDS_VAL_TOO_HIGH: %NiVoltage V

will be displayed as

Val. is too high: 8.9 V

if an object NiVoltage exists as in the previous example and in a resource file one
line like following will be found2:

IDS_VAL_TOO_HIGH “Val. Is too high”

A.02 Command (CMD)
The CMD VFSM is used to exchange control information between state machines as
explained at the beginning of this appendix. The following state machine diagram
describes the behavior of the CMD VFSM:

1 this is not a tag, but a place holder for a defined ObjectName
2 The format of such a resource file is application dependant and not specified in the VFSMML standard.

Appendix A

CMD

If (cmd_input) then cmd_output

I:

Figure 12: CMD VFSM

The output is always same as the input. The system is triggered any time a command
was send, also when the same command was repeated. A command is represented by
a number. The value 0 is reserved for the ‘clear’ action and must not be used for
other control purposes.

The CMD VFSM is used in communication between state machines in a master-slave
model:

 Master
VFSM

Slave
VFSM

CMD
VFSM

CMD-OUT CMD-IN Set
cmd_input

Set
cmd_output

clear

Figure 13: Usage of CMD VFSM

From the view of the Master VFSM the CMD VFSM is a CMD-OUT VFSM, i.e. the
Master performs the input action ‘cmd’ sending it to CMD VFSM. From the view of
the Slave VFSM the CMD VFSM is the CMD-IN VFSM, i.e. the Slave VFSM is the
receiver of the output action ‘cmd’ from the CMD VFSM.

The CMD VFSM has following properties:

 Type
Filename, where all commands (numbers) are mapped to meaningful names, i.e.
strings. These strings serve the client to display the data appropriately.

A.03 Counter (CNT)
The CNT VFSM controls a counting device. The following state machine diagram
describes the behavior of the CNT VFSM:

46

Always

start | reset_start

RESET

1

reset

reset_start

start

OVERSTOP

5

start | reset_start

STOP

2

reset

stop

reset_start

expiration

RUN

3

reset
reset_start

stop

OVER

4

Figure 14: CNT VFSM

The input names used for state transitions:

Input Name Description

start Incoming command from a master: start counter

stop Incoming command from a master: stop counter

reset Incoming command from a master: reset counter (don’t care if counter running or
stopped)

reset_start Incoming command from a master: reset and start counter

expiration The counting device reports a new state: limit exceeded

Table 16: CNT Input Names

The CNT VFSM has following properties:

 Const
Defines the counter limit. Can be a number (e.g. 10) or an NI, DAT or PAR object.

A.04 Data (DAT)
The DAT VFSM controls a data object which is used to receive and store data. On
starting the VFSM is in state OFF. The following state machine diagram describes
the behavior of the DAT VFSM:

Appendix A

Always

on

OFF

1

new_data
off

DEF

2

set

off CHANGED

3

new_data

off

INIT

4

Figure 15: DAT VFSM

The input names used for state transitions:

Input Name Description

on Incoming command from a master: activate object

off Incoming command from a master: deactivate object

new_data The owned data object reports a new state: new data received

set The owned data object reports a new state: data read (by somebody) i.e. the change
has been notified / consumed.

Table 17: DAT Input Names

The DAT VFSM has following properties:

 Format
Defines the data type of the stored value. The following types are defined:

bool: true (1) or false (0)
char: 7 bit character
uchar: 8 bit character (unsigned)
byte: -127..+127 (8 bit signed)
ubyte: 0..255 (8 bit unsigned)
short: -32767..+32767 (16 bit signed)
ushort: 0..65535 (16 bit unsigned)
long: -2147483647..+ 2147483647 (32 bit signed)
ulong: 0..4294967295 (32 bit unsigned)

48

float: 32 bit floating point (8.43x10-37≤|f|≤3.37x1038)
double: 64 bit floating point (4.19x10-307≤|f|≤1.67x10308)
string: a character string of any length
pointer: -2147483647..+ 2147483647 (32 bit signed)
%E0..%E8: 32 bit floating point, exponent repr. e.g. “3.5e-12”
%F0..%F8: 32 bit floating point, fixpoint repr. e.g. “1.234”
%G0..%G8: automatic conversion data type

%En and %Fn are floating point values. The number n (0..8) specifies the number of
digits representing the number when sent to a client. It is not the internal
representation; this is always the full range. The same is valid for %Gn, however the
data type is found automatically.

 Unit
Defines the unit of the type (e.g. V, mA, Bar, etc.). This string is free selectable and
serves the client to display the data appropriately.

A.05 Digital Input (DI)
The DI VFSM is used to receive states of a real controlled device. The following
state machine diagram describes the behavior of the DI VFSM:

Always

high

low

UNDEF

1
low

HIGH

3

high

LOW

2

Figure 16: DI VFSM

When starting, the VFSM is in state UNDEF, i.e. the digital value (HIGH or LOW) is
not defined / known yet. From the control system point of view the DI VFSM is a

Appendix A

slave and shows its status by its states (see also the Figure 9. Objects defined to
exchange control information with the real world and its description).

The input names used for state transitions are states of the real controlled device:

Input Name Description

high The real controlled device is in state high/on/true (etc.)

low The real controlled device is in state low/off/false (etc.)

Table 18: DI Input Names

The DI VFSM has following properties:

 Invert
Optional, if not present the default value is FALSE. It can be TRUE if the value shall
be inverted for further evaluation. For instance, if a DI is set to LOW, it was received
as HIGH.

A.06 Digital output (DO)
The DO VFSM is used to send commands to a real controlled device. The following
state machine diagram describes the behavior of the DO VFSM:

Always

high

low

UNDEF

1
low

HIGH

3

E:

high

LOW

2

E:

Figure 17: DO VFSM

high

low

50

When starting, the VFSM is in state UNDEF, i.e. the digital value (HIGH or LOW) is
not defined yet. From the control system point of view the DO VFSM is a slave and
receives commands (low or high). From the real controlled device point of view DO
is a master and sends commands (low or high) to it.

The input names are commands from the control system (master) and are used for the
state transitions as follow:

Input Name Description

High Incoming command from a master: high

Low Incoming command from a master: low

Table 19: DO Input Names

The output names are commands to the real controlled system (slave) and are used as
entry actions in following states:

State Name Description

HIGH Entry action: send command ‘high’ to the real controlled device

LOW Entry action: send command ‘low’ to the real controlled device

Table 20: DO Output Names

The DO VFSM has following properties:

 Invert
Optional, if not present the default value is FALSE. It can be TRUE if the value shall
be inverted for further evaluation. For instance, if a DO is set to LOW, it will be sent
out as HIGH.

A.07 Event counter (ECNT)
The ECNT is a VFSM derived from the CNT VFSM. Its behavior is the same as of
the CNT VFSM, however it is used to count any kind of events inside the VFSM
control system and therefore a few additional properties are defined:

 Const
Defines the counter limit. Can be a number (e.g. 10) or another NI, DAT or PAR
object.

 Input
Defines the object used as base for the counter, i.e. VFSM which shall be observed
by the counter.

 UpValue
Defines the event on the observed object, which increases the counter.

A.08 Numeric input (NI)
The NI is a VFSM derived from the DAT VFSM. Its behavior is the same as of the
DAT VFSM. Its purpose is to communicate with a real existing device as its master
(see also Figure 9 on page 42 and its description). There are following properties
defined:

Appendix A

 Format
Defines the data type of the stored value. All the same data types as for the Data
object besides string (see A.04) are possible.

 Unit
Defines the unit of the type (e.g. V, mA, Bar, etc.). This string is freely selectable and
serves the client to display the data appropriately.

 ScaleMode
Defines the scale mode of the type:

lin: baxy +=

exp:
baxey +=

log:)log(baxy +=

 ScaleFactor
Defines the scale factor for the scale mode (the value of a).

 Offset
Defines the offset for the scale mode (the value of b).

 Threshold
Defines the threshold for the NI value.

A.09 Numeric output (NO)
The NO VFSM is used to provide data to a real controlled device. On starting, the
NO VFSM is in state OFF. The following state machine diagram describes its
behavior:

Always

set on

OFF

1

E:

always

SET

2

E:

off

ON

3

E:

Figure 18: NO VFSM

The purpose of the NO VFSM is to send internally stored data to the real controlled
device as its master (see also Figure 9. Objects defined to exchange control
information with the real world on page 42 and its description).

The input names are commands from the control system (master) and are used for the
state transitions as follow:

read_data_once
no_data

read_data_always

52

Input Name Description

set Incoming command from a master: activate the object once

on Incoming command from a master: activate the object continuously

off Incoming command from a master: deactivate the object

Table 21: NO Input Names

The output names are commands to the real controlled system (slave) and are used as
entry actions as follows:

State Name Description

SET Entry action: send command ‘read_data_once’ to the real controlled device

ON Entry action: send command ‘read_data_always’ to the real controlled device

OFF Entry action: send command ‘no_data’ to the real controlled device

Table 22: NO Output Names

The following properties are defined:

 Format
Defines the data type of the stored value. All the same data types as for the Data
object besides string (see A.04) are possible.

 Unit
Defines the unit of the type (e.g. V, mA, Bar, etc.). This string is free selectable and
just serves the client to display the data appropriately.

 ScaleMode
Defines the scale mode of the type:

lin: baxy +=

exp:
baxey +=

log:)log(baxy +=

 ScaleFactor
Defines the scale factor for the scale mode (the value of a).

 Offset
Defines the offset for the scale mode (the value of b).

 OutData
Defines the object (TAB, DAT, PAR, NI or UDC) to be used for output.

A.10 Output function (OFUN)
The OFUN VFSM is used to enable the control system to evaluate results of certain
calculations which are not I/O related. The OFUN VFSM has only one state and its
output is a function of the input. The following state machine diagram describes its
behavior. The function f is user defined.

Appendix A

 Cmd

OFUN

E:
f(cmd)

Figure 19: OFUN VFSM

The following properties are defined:

 FunctionName
Defines the name of the function f which implements the OFUN object (e.g. a C++
function).

 UnitName
Defines the unit (interface) or VFSM to be accessed by the coded function.

A.11 Parameter (PAR)
The PAR is a VFSM derived from the DAT VFSM. Its behaviour is the same as of
the DAT VFSM. Its complexity is very similar to the NI object. However the data
stored in a PAR VFSM can be saved to be available after a system restart. The
following properties are defined:

 Category
Defines how to save the parameter value. The following categories are possible
(PP=Process Parameters, EP=Equipment Parameters):

PP: store the parameter temporary (for current sesion)
PP_Coded: exactly the same as PP, however the parameter value is a

result of a calculation. There is no need to distinguish between
PP and PP_Coded, besides that the user knows the source of the
data.

EP: store the parameter permanently for the current user
EP_LM_USER: store the parameter permanently for all users
EP_LM_ADMIN: store the parameter permanently for all users, can be

change only by a system administrator

 Format
Defines the data type of the stored value. All the same data types as for the Data
object (see A.04) are possible.

 Unit
Defines the unit of the type (e.g. V, mA, Bar, etc.). This string is free selectable and
serves the client to display the data appropriately.

 LimitLow
Defines the lowest accepted value.

 LimitHigh
Defines the highest accepted value.

54

 InitValue
Defines the initial value of the parameter.

A.12 String (STR)
The STR VFSM is used to control a data object used to evaluate strings. In detail, it
compares the received string with a regular expression (RE). The result is a “match”,
“no-match” or “error”. The regular expression itself can be a DAT, PAR or a hard
coded string. The regular expression allows all special characters as known in UNIX
tools like sed, awk. This means that also multiple matches are possible, i.e. the
compare result “match” can deliver more then one resulting string. The resulting
(sub)string(s) can be stored in other objects such as STR, DAT, PAR or NI.
Dependant on the data type of the destination object, the resulting (sub-) string will
be converted. In case the conversion is not possible the destination object will be not
changed.

The table below describes all allowed regular expressions:

RE Meaning Example
. Matches one arbitrary character a.c matches ‘abc’ but not ‘abbc’
^ Matches the beginning of a string ^ab matches ‘abcd’ but not ‘cdab’
$ Matches the end of a string ab$ matches ‘cdab’ but not ‘abcd’
\n n=1..9, matches the same string of characters as

was matched by a sub expression enclosed
between () preceding the \n. n specifies the n-th
sub expression

(ab(cd)ef)A\2 matches ‘abcdefAcd’

() sub expression (\d)A(\d) matches 1A2, 0A4 ...
[] Defines a set of characters to be matched [a-z] matches ‘s’, ‘w’… but not ‘S’, ‘W’…
[^] Defines all characters except the characters in

the set
[^1-9] matches ‘s’, ‘W’ … but not ‘1’, ‘2’…

(| |) Matches one of the alternatives (ab|cd) matches ‘ab’ and ‘cd’
RE+ Matches one or more times the RE [^1-9]+ matches ‘StateWORKS’ but not ‘Obj5’
RE? Matches one or zero times the RE abc? matches ‘ab’ and ‘abc’
RE* Matches zero or more times the RE ab* matches ‘a’, ‘ab’, ‘abb’ …
RE{n} Matches exactly n times the RE ab{2} matches ‘abb’ only
RE{n,} Matches at least n times the RE ab{2,} matches ‘abb’, ‘abbb’ but not ‘ab’
RE{n,m} Matches any number of occurrences between n

and m inclusive
ab{1,2} matches ‘ab’ and ‘abb’ only

Table 23: STR VFSM - Allowed Regular Expressions

The following state machine diagram describes the behavior of the STR VFSM:

Appendix A

Always

on

OFF

1

set

off

NOMATCH

3

set

off
MATCH

4

nomatch match

off

error

INIT

2

E:
I:

matchnomatch

off
error

DEF

5

E:
I:

off

set

ERROR

6

Figure 20: STR VFSM

The Input action in states INIT and DEF is always the same: analyze string if a new
string has arrived. The Entry action is always the same: reset the analysis function.

The input names used for state transitions:

Input Name Description

On Incoming command from a master: activate object

Off Incoming command from a master: deactivate object

Set Incoming command from a master: results evaluated

Match The owned data object reports a new state: sub-string(s) found

Nomatch The owned data object reports a new state: no sub-string found

Error The owned data object reports a new state: error evaluating the RE

Table 24: STR Input Names

The STR VFSM has following properties:

56

 Input
 Defines the source string to be analyzed. Can be DAT or PAR.

 RegularExpression
Defines the regular expression to be used. Can be a constant string, DAT or PAR.

 Substring
Defines the destination object: DAT, PAR, STR or NI. This property is a list, i.e.
there can be many destination objects, in case there are many matches possible. The
number of parents in the RE gives the number of possible sub strings.

A.13 Switch point (SWIP)
The SWIP VFSM is used to control a switch point function which is used to evaluate
changes of data of other VFSM. The following graph shows the usage of the SWIP
VFSM:

time

Input value

LimitHigh

LimitLow

HIGH

IN

LOW

The following state machine diagram describes the behavior of the SWIP VFSM:

Appendix A

Always

on & low

on & high

on & in

OFF

1

off in

high

LOW

2

off low
high

IN

3

off

low

in

HIGH

4

Figure 21: SWIP VFSM

The input names used for state transitions:

Input Name Description

on Incoming command from a master: activate object

off Incoming command from a master: deactivate object

low The controlled switch point function reports a new state: object value below min.
limit

high The controlled switch point function reports a new state: object value above max.
limit

in The controlled switch point function reports a new state: object value between min
and max (min ≤ value ≤ max).

Table 25: SWIP Input Names

The SWIP VFSM has following properties:

 Input
Defines the object used as a base for SWIP, i.e. object observed by the switch point
function. Can be NI, PAR, DAT or UDC VFSM. Note that more than one SWIP
might monitor the same object, so as to obtain more detailed information.

 LimitLow
Defines the value below which the switch point function reports state LOW.

58

 LimitHigh
Defines the value above which the switch point function reports state HIGH.

A.14 Table (TAB)
The TAB VFSM is used to provide data of various VFSM objects to a real controlled
device. The following state machine diagram describes the behavior of the TAB
VFSM:

 Cmd

TAB

E:
f(cmd) = index

Figure 22: TAB VFSM

The entry action specifies the index of a certain VFSM of type PAR, DAT or NO, i.e.
TAB works as a multiplexer that maps several VFSMs to one output:

TAB

…

Index

Output

VFSM 1

VFSM 2

VFSM N

Figure 23: TAB as Multiplexer

The following properties are defined:

 Input
Defines the VFSMs used as base for TAB. This property is a list, i.e. as a rule there
are many objects used by TAB.

A.15 Timer (TI)
The TI VFSM is used to control a timer. The timer is a special counter. So the
behavior of the TI VFSM is the same as of the CNT VFSM, however there are more
properties required:

 Const
Defines the counter limit. Can be a number (e.g. 10) or an NI, DAT or PAR object.

 Clock
Defines the clock base, i.e. the time period after which the counter value gets
increased automatically. Can be

Appendix A

1ms = 10-3 sec
10ms = 10-2 sec
100ms = 10-1 sec
1s = 1 sec
1min = 60 sec
1h = 3600sec

A.16 Up-Down counter (UDC)
The UDC is a counter derived from the DAT VFSM (not CNT). The purpose of this
VFSM is to be able to count in both directions. The data type (format) is long, the
counter has no limit (i.e. a SWIP VFSM is required to evaluate its value). Its
behavior is the same as of the DAT VFSM, however in the states INIT, CHANGED
and DEF following incoming commands are possible:

Input Description

clear Execute the input action “clear counter”

up Execute the input action “increase counter value”

down Execute the input action “decrease counter value”

Table 26: UDC Input Names

Each of these commands causes the data object owned by the UDC VFSM to go to
the state ‘new_data’

The following properties are defined:

 Unit
Defines the unit of the type (e.g. V, mA, Bar, etc.). This string is free selectable and
serves the client to display the data appropriately.

 UpInput
Defines the object, which is the source for triggering the counter increment
operation.

 UpValue
Defines the value of the object defined in <UpInput> tag, which increases the
counter.

 DownInput
Defines the object, which is the source for triggering the counter decrement
operation.

 DownValue
Defines the value of the object defined in <DownInput> tag, which decreases the
counter.

 ClearInput
Defines the object, which is the source for triggering the counter clear operation.

 ClearValue
Defines the value of the object defined in <ClearInput> tag, which clears the counter.

A.17 Any data (XDA)
The XDA VFSM is used as an OFUN VFSM support object, by pointing to a
memory segment used by the OFUN VFSM. The XDA VFSM looks the same as the

60

TAB VFSM. However its output is exactly the same as its input, i.e. f(cmd) = cmd.
The following property is defined:

 Size
Defines the size of memory block in bytes.

61

Appendix B Units

The unit concept is introduced to allow the access to any VFSM objects. So a unit
defines the I/O interface to a VFSM. It does not have any other functionality. The
definition of a unit is very similar to a VFSM, however a unit does not have the
behavior section.

There are two predefined optional unit properties:

 Address
Physical address of a unit.

 Port
The communication port of a unit.

62

Appendix C Parsing VFSMML

A.01 DOCTYPE Declaration for VFSMML
VFSMML documents should be validated using the XML DTD for VFSMML,
which is shown below in section A.03. Documents using this DTD should contain a
doctype declaration of the form:

<!DOCTYPE vfsmml
 PUBLIC “http://www.stateworks.com/dtd/vfsmml1.0.dtd”
>

The URI might be changed to that of a local copy of the DTD if required.

A.02 Use of VFSMML without a DTD
If a VFSMML fragment is parsed without a DTD, i.e. as a well-formated XML, it is
the responsibility of the processing application to treat the white space characters
occurring outside of token elements as not significant.

A.03 The VFSMML DTD
The code below is the complete Document Type Definition of VFSMML:

<!ELEMENT vfsmml (Name?, Description?, VFSM*)>
<!ATTLIST vfsmml
 project (true | false) "false"
 source (default | CDATA) "default"
>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Description (#PCDATA)>
<!ELEMENT VFSM (Type, Description?, Prefix?, Object*, IOid*,
State*)>
<!ATTLIST VFSM
 type (vfsm | predefined | unit) "vfsm"
>
<!ELEMENT Type (#PCDATA)>
<!ELEMENT Object (Name, Description?, Property*)>
<!ELEMENT Property (Name, Value)>
<!ELEMENT Value (#PCDATA)>
<!ELEMENT Prefix (#PCDATA)>
<!ELEMENT IOid (Name, Type?, Description?, Input*, Output*)>
<!ELEMENT Input (Init?, Name, Value)>
<!ELEMENT Init (#PCDATA)>
<!ELEMENT Output (Name, Value)>
<!ELEMENT State (Description?, Name?, EntryAction*,
ExitAction*, InputAction*, Transition*)>
<!ATTLIST State
 always (true | false) "false"
>
<!ELEMENT EntryAction (#PCDATA)>
<!ELEMENT ExitAction (#PCDATA)>
<!ELEMENT InputAction (Condition, Action*)>
<!ELEMENT Condition (ci | apply)>
<!ELEMENT ci (#PCDATA)>
<!ELEMENT apply ((and | or), (ci+ | apply*)+)>
<!ELEMENT and EMPTY>
<!ELEMENT or EMPTY>
<!ELEMENT Action (#PCDATA)>
<!ELEMENT Transition (Condition, StateName, Action*)>
<!ELEMENT StateName (#PCDATA)>

63

Appendix D References

[1] www.stateworks.com

[2] www.w3c.org

