

Modeling and Building Reliable, Re-useable Software

Ferdinand Wagner
Free-lance consultant

f.h.wagner@t-online.de

Peter Wolstenholme
Consultant: CYDON Technology
p.wolstenholme@computer.org

Abstract
Agile Software practices place great emphasis on

coding, yet coding is time-consuming, difficult, and the
source of many errors. The paper describes a way in
which the specification and implementation processes
can be unified, and much coding avoided as regards the
behavioural aspects of the software. It shares much in
common with Agile Methods, yet permits a significant
degree of modeling to take place. This VFSM technique
and its commercial implementation StateWORKS has
been used for several years in a variety of projects, large
and small, in industrial control and in
telecommunications. It gives significant benefits in time-
to-market, in reduced maintenance, and in accuracy of
the final project documentation. It facilitates software re-
use and system up-grading. It has potential to link up the
“Executable UML” and “Agile Modeling” initiatives, to
their mutual benefit.

1. Background

1.1 Desktop Packages Compared with
Embedded System Software

Much software now in use is developed for PC and

work-station applications, and, considering its
complexity, is often quite reliable. This is achieved
through very arduous testing by the production team,
followed by much more testing by users, of beta versions,
and then, after the issue of the third major release, the
product becomes stable and reliable, although rarely
perfect. Another factor helping to ease the development
of such software is the existence of a huge software
library, or A.P.I. library, holding functions which are well
defined, and rather easily tested by their developers, and
providing a possibility for massive re-use of such
software components in a variety of projects.

Taking a look at the situation for software of

embedded systems, which must control complex prcesses
which are strongly influenced by the external
environment, we see a less favourable situation. Although
many tested A.P.I’s will be available, for operator
interfaces, input-output processing, signal processing and
the like, the essential process will require software to be
written from scratch. There will be no standard A.P.I. for
"Run a blast furnace".

Such software will need to express the behaviour
required of the system, and this will normally become
very complex when all the various errors and problems
which could arise are taken into account. It is usual to
write it in a language such as C++ or C, and this code
becomes very hard to read, for modification or for
maintenance purposes: however, the code becomes the
only expression of the system behaviour, and contains
details which were never part of the initial written
specifications. It is very hard to see what will happen in
unusual, but possible, circumstances, and tests have to be
arranged, but there is rarely enough time to do all
possible tests.

Most software for embedded systems is in fact a
prototype, which could never be tested as intensively as
mass-market software, but the users expect high
reliability. Even safety-critical software is often
developed by companies using fewer resources than are
available to mass production software firms. A more
secure development process is becoming essential,
although overdue.

PREPRINT: To be presented at ECBS’03, Huntsville, April 2003.
© Copyright IEEE 2003. Personal use of this material is

permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained
from the IEEE This paper will also be published in due course on the
Web site www.stateworks.com.

1.1. Dangers of Coding

It is becoming clear that special coding for a new

project is a dangerous activity, and that it is very hard to
manage the development process. The code will be
intrinsically unreliable, and often causes project delays
while it is being fixed.

It is the purpose of this paper to outline an approach
which eliminates some of the problems, by avoiding
certain parts of coding, and imposing a strict discipline on
the software structure. The techniques described below
have been applied to a variety of projects over more than
a decade, and are not limited to the implementation of
software for embedded systems. Essentially, rather than
coding this area of software, we express it in a formal and
abstract way, as a specification, and then execute a fixed
program to process the specification. Because the fixed
program has been in use, without change, for some years,
it is totally reliable, and it acts on data which is the
specification in a condensed and specialised format, for
efficiency.

Although this idea is not new, the way in which it is
applied in combination with other features provides a
very powerful tool for implementing software for
complex systems.

2. Major Features.

2.1. Separation of Control Flow from Data

We consider that much complexity arises from the

intermingling of computations of various sorts with the
control statements, as this makes it difficult to retain
awareness of all the assumptions implied in one part of
the code, but which will affect other sections. The control
flow, to which we give the classical meaning, namely the
majority of statements of the nature of " if..then..else,
do…while, switch….case..." defines the behaviour of the
software. We extract all of this, separating it from all the
numerical calculations or algorithms, and express it in a
finite state machine form. (For those unfamiliar with this
concept a short explanation is given in Appendix A.)

2.2. Finite State Machines

Although finite state machines (FSM) have long been

considered a useful tool for the programmer, it is still
common today to see allegations that, when applied to
real-life projects, they become too unwieldy to program,
and too complex to understand [1, 2]. This view is not
correct, but certain techniques need to be employed if
they are to be used successfully. Essentially, a software

project, as regards the control flow, needs to be split into
a number of FSMs, suitably inter-linked.

Several writers have tried to make this clear. David
Harel, with StateCharts, suggests using a hierarchical
structure, with inheritance [3]. We advise the use of a
number of FSM arranged in a hierarchy, but do not insist
on this in all cases. We dislike the "nesting" idea, where a
state can contain a complete, subsidiary FSM, but rather
suggest a flat arrangement where each FSM has its own,
rather clean definitions. The basic rule is that a lower-
level FSM presents its state to the upper levels, and the
upper levels can pass commands to the lower levels:
rather like an army. (There are some ways of getting
round the rules, but they should be employed with
discretion.) All upper-level machines have access to
states of lower-level machines, and we prefer not to speak
of inheritance in this context. Let it suffice to point out
that, at any given instant, the state of the entire system is
expressed as the set of all the states of the individual
FSMs composing it.

A good textbook explanation of FSM applications is
given in Ref. [4] , and the author provides quite a wide
range of examples of FSM application, both singly and
with a hierarchical structure.

We use a very simple and classical text-book form of
the FSM [5], limited to a set of states, transitions, and
associated actions (Figure 1) and similar to that proposed
for finite state machines in Executable UML [6]. In the
transition diagram the states are the vertices of a graph,
and the transitions may be arranged as needed. Several
transitions from any specific state to one other are
allowed. Situations where the same transition might occur
for several rather different reasons are catered for by
allowing a complex logic expression to govern each
transition.

2.3. Virtual Inputs

For practical and theoretical reasons, the expressions

which regulate the transition conditions of each FSM are
expressed in a special form of binary algebra, which we
call positive-logic algebra. Each term is an assertion of
some aspect of the system outside the FSM, and is called
a "Virtual Input" because it is derived from a real input
signal which may be digital, analog, a timer, an event etc.
Various terms may be combined in a binary expression,
using AND and OR operators only. (AND takes
precedence over OR.) The NOT operator is forbidden.
This is because an absence of an assertion, such as
"Valve_Open", does not necessarily have a meaning such
as "Valve_Closed" as there could be some other input
state such as "Valve moving" or
"Valve_Position_Unknown". Many quantities are

analog, and need to be transformed into virtual inputs
such as "Pressure_Low, Pressure_Good, Pressure_High".

Although it is obvious that the NOT operator will be
hard to use in situations where the value has three or
more meaningful states, we prohibit its use even when the
input is clearly binary, so that the transition conditions
are always made up of positive assertions of various
sorts. The programmer is, naturally, quite free in the way
he wishes to generate and use them. By use of the
positive-logic algebra, the software for enumeration of all
the expressions becomes very efficient indeed.

Another way of regarding the Virtual Inputs is to
consider them as a virtual lower layer, presenting an
FSM-style interface to the real FSM's we are to design.
The Virtual Input to the entire system is a set of input
states, each under the control of some specialised
input/output software described below. The states are
visible to the upper layers, for use in the transition
expressions. For example, a motorised valve might have
five possible states such as OPEN, CLOSED, OPENING,
CLOSING, FAULT. A NOT operator, applied to any of
these states, is rather meaningless as it could imply any
one of the other four states.

On account of the use of Virtual Inputs, the
techniques were given the name "Virtual Finite State
Machine" (VFSM).

2.4. Actions

At various stages in the operation of the software, the

FSM must act on other parts of the system, by issuing
commands, setting new parameters, sending signals,
starting timers etc. We use the term "Action" for such
stimuli, and there are three basic categories (Figure 1):

- Entry actions occur at entry to a given state, and
correspond to the classical Mealy automata in FSM
theory.
- Exit actions occur at the exit from a state: these
are slightly less commonly used.
- Input Actions are actions which, although
associated with some form of input condition or
signal, do not necessarily cause a state change, but
need to cause an output of some nature. These
correspond to the Moore model of automaton.

It must be stressed that these actions are not associated
with specific transitions but with states.

The designer will need to establish an "Output Name"
for each action he requires in the system, and the FSM
operations will cause "Virtual Outputs" to be generated.
These are handled elsewhere.

2.5. Direct Execution without Coding

In design of the various FSMs in his system, the

programmer will need to specify all the Virtual Inputs,
using Input Names. He will have prepared all the
transition expressions, and defined actions to be
performed or invoked at various stages in the process. All
this work is performed using a specialised editor, with a
graphical presentation of a state-transition diagram
coupled to a tabular presentation of all the fine detail. At
the conclusion of this process, a file is generated,
expressing the complete structure in a compressed
format. This is called the "Control Specification".

At any time during the process, the designer may run
some simulations and other tests, in order to see how the
system will behave in various conditions. Such
simulations run on the same data - the Control
Specification - as will be used in the target application.
When the designer is happy, and has perhaps also shown
the running process to his supervisor or to his customer,
the Control Specification is loaded to the target system,
together with the program which we call the VFSM
Executor. Some form of input-output software package
is also needed, and this is described below.

Waiting E: Timer_Start

C:

X: Timer_Stop

Door_Open Lamp_On

Idle Timeout | Cmd_Stop

Playing Door_Open & Parameter_Ok |
Cmd_Play

Figure 1. State specification: graphical (a) and
tabular (b) forms

It is important to realise that no run-time code is
compiled in this process. In a sense, no new software is

Idle

Playing

Timeout |
Cmd_Stop

a)

Waiting

E: TimerStart
X: TimerStop

b)

I: Door_Open /
Lamp_On

Door_Open &
Parameter_Ok |

Cmd_Play

generated, and we see software re-use pushed to an
extreme. (A similar approach is described in [7]). Of
course, one might consider the Control Specification to
be a high-level language, but it is not the usual procedural
language, as it may have many concurrent activities
rather than expressing a single thread, and indeed a major
system might have some hundreds of FSMs in operation,
all implemented by means of the single VFSM Executor,
and existing at the same time.

The Control Specification is an expression of a very
few, basic concepts such as states, virtual inputs, and
transitions, and it is extremely efficiently implemented by
the VFSM Executor. Many thousands of state transitions
per second can be handled in a practical system, using a
modern c.p.u., depending on what other functions need to
be dealt with at that time, of course. The VFSM concept
can be easily applied to multiple-processor systems, using
a LAN.

This technique goes far beyond the conventional idea
of setting out a state-transition table and implementing
FSMs by means of an interpreter, as a state-transition
table of classical structure can not easily cope with very
complex transition expressions and there is a risk that
these will have to be implemented and documented
elsewhere. The Virtual Input concept is the essential key
to both making the execution process efficient, and
showing adequate detail about transition conditions at the
abstract level of the state machine design.

Because there is no compilation of code, all revisions
have to be made at the abstract level of the specifications,
which means that these specifications really express all
the details and can not be out of date.

Figure 2: StateWORKS Execution Environment

2.6. Treatment of Inputs

The VFSM executor runs in what we term a "virtual

environment" whereby the inputs which reach each FSM

are not the real, varied and sometimes complicated items
found in the system, but have been transformed into
virtual inputs, as described in section 2.3 above. (Similar
considerations apply to the outputs.)

At any time, the Virtual Input contains the complete
information about the control conditions in the system,
and it is in fact a set. For instance, the virtual input
{DI_LOW , TI_STOP} means that the digital input has the
control value LOW, the timer has been stopped and the
control values of other inputs are unknown.

We introduce a control property for each object and its
usage in the following way:

Each object has a control value which is a number. Each
object has its definition of the control value that describes
the calculation algorithm and range. To make it more
understandable we use names for control values instead
of numbers. The name of the control value is the object
control property.

 An example might be a measurement of the level of liquid
in a tank. Rather than using the numerical value of the
measurement, such as gallons, we establish “switch points”
from which we derive control properties such as
“LEVEL_LOW, LEVEL_OK, LEVEL_HIGH” which are
available to supply the virtual input. By this means, the
specific details of inputs and outputs, which might require
much more complex treatment than implied in the above
examples, such as parsing messages, are isolated from the
VFSM design work. This approach has a number of
advantages:

1. Simplification of the VFSM design work by
removal of extraneous considerations.

2. Easy alteration of parameters if a design change is
required at a later stage.

3. Easy alteration of parameters if required during
operation of a process.

4. Isolation of input signal processing, which allows a
great deal of software re-use when many similar
functions are encountered in a system.

5. The VFSM editor (Figure 3) is made aware of all
the control properties, input names, output functions
etc. which have been set up, and can check for
consistency of the entire design.

6. System behavior can be examined before much
specialized programming work starts, by just
assuming that the virtual environment can be
specified at the start but will be implemented in
detail at a later stage.

Specification
data generated
by SWEdit

I/O Unit

User-written

Output Functions

Control

Specification

VFSM

Executor

RTDB

 (Objects:
State Machines,
Commands,
Digital Inputs,
Digital Outputs,
Parameters,
etc.)

Virtual Input

Inputs

Outputs

Di, Ni,

Do, No, …

TCP/IP

DDE

COM

7. Apparent simplification of a complex project,
allowing it to be handled when previous approaches
have failed. (Obviously, it will still be complex and
require a good deal of design work !)

There is therefore a need to generate all the control
properties from real-world inputs such as analog-to-
digital converters, timers, counters, digital sensors,
events, commands, messages etc. and a considerable set
of routines for this has been developed over the years.
Originally, these were assembled into a package known
as the I/O Unit, but in recent years a more versatile
approach has been developed, using a Real Time Data
Base (RTDB) and the entire product is commercialised
under the name of StateWORKS (Figure 2). It is written in
C++.

2.7. The RTDB

The RTDB centralises all information regarding

states, signals, inputs, outputs and messages. It holds the
Control Specification and all Object Properties. In
Microsoft Windows NT/2000 systems it acts as a DDE or

 a COM server, so that other software in the system
may interact with the StateWORKS components.
Versions for operating systems based on UNIX, such as
Linux, Sun Solaris or VxWorks are provided with similar
facilities, using POSIX or operating system specific calls
as a rule. TCP/IP communication is supported. The
RTDB holds the linkages between the physical
input/output signals and the virtual environment: these
are set up using the StateWORKS editor, and in many
instances standard library items can be taken, and merely
configured.
 User interface software, and local or remote monitoring
and debugging features, are easily connected to the
RTDB. A wide range of standard API functions is
provided, so that in some extreme cases a highly complex
control system may be developed with almost no classical
coding. A comprehensive API manual is supplied. New
functions may be easily added as required. The RTDB
contains a variety of standard object types with the
control values shown in Table 1.
 There are two types of objects in the RTDB: input and
output objects. Input objects can influence system
behaviour. and they have control values. Output objects
have no influence on control and therefore they do not
have control values.

Table 1: RTDB Objects

Object Description Value Control value

VFSM State machine State (Number > 0,
 User defined Name)

State (Number > 0,
 User defined Name)

CMD Command Command (Number > 0,
 User defined Name)

Command (Number > 0,
 User defined Name)

TI Timer Counter state OVER, OVERSTOP, RESET,
RUN, STOP

CNT,
ECNT

Counter
Event counter

Counter state OVER, OVERSTOP, RESET,
RUN, STOP

UDC Up/Down counter Counter state CHANGED, DEF, INIT
SWIP Switchpoint Object to be supervised HIGH, IN, LOW, OFF
XDA Memory Number > 0 Number > 0
OFUN Output function Number Number
DI Digital input Boolean value LOW, HIGH
NI, DAT,
PAR

Numerical input, Data,
Parameter

Value CHANGED, DEF, INIT

DO Digital output - -
NO Numerical output - -

AL Alarm - -
TAB Table - -
UNIT I/O Unit - -

3. The Development Process

3.1 General Strategy

The development process for StateWORKS is, to some
extent, a matter of style and of experience, and there can
be several reasonably good ways of designing any given
system. There are some aspects of the process which are
different from common practice in high-level modelling.
Although any design needs first to be studied at the
overall level, we suggest following the rule "top-down
design: bottom-up implementation" which held for
coding. Thus, the initial overview identifies some
functional elements which should be implemented
separately before combining into the whole.

In a typical embedded-system project, one then starts
with the lowest level of FSMs, directly controlling or
monitoring the hardware. Then the next level up can be
designed, to issue commands to the bottom level and to
monitor its activities. The complete design proceeds in
this way, and at frequent intervals the FSMs are tested,
 by a simulator, and their behaviour in all possible
situations examined, and indeed discussed with other
members of the project team whenever a relevant issue
arises. As this process continues, it will very often be
found that the initially-planned structure has to be
revised, because the complete system specifications
which were the starting-point of the project were not
complete in all respects. Readers familiar with the
concepts of Agile Software Development will recognize
some of them in the above description.

Of course, other FSM structures may be needed, and
we do not wish to impose a strict hierarchy for all
situations. Several groups of FSMs might be required in a
project, with no strong inter-communication between
them. Another problem might arise in knowing where
and how to start, if there is no clear base level: this was
encountered recently in the implementation of a very
complex communications protocol, where the designer
just had to start somewhere, and work through the system
until he arrived at a good solution, using five FSMs in
fact.

The design process outlined above can be completed
before many of the algorithms which will eventually be
needed have been developed, as it avoids handling data.
Testing and design reviews can then be performed in the
virtual environment, until the designer is confident that
he has an effective solution. Following this, the various
RTDB objects need to be finalised, and remaining
functions programmed in the usual way. In practice, there
will be some degree of iteration as detail design issues
can impact on the FSM structure, to a limited extent.

3.2. Comparison with Other Methods

 We are in agreement with proponents of Statecharts
and UML to the extent that we believe that software
development methods must move towards automatic
implementation of abstract specifications, and away from
coding. But in practice, such methods have a major
problem, in that when one starts with a high-level project
specification, and works gradually downwards, the final
result can never be complete. As a rule, top-down design
does not work for control flow: we have to start with a
vague idea about the main (upper) state machine and do
the detailed specification of the lower level state
machines. Then we get some feeling for the intermediate
levels of state machines and work through these until we
reach the main state machine.
 It is quite impossible to foresee, from the start, all the
small details which will have a critical influence on the
way in which the final code will work. The end result is
that, after going as far as possible with, say, UML, one is
obliged to start coding, and this coding diverges from the
beautiful UML model one created. Finally, only the code
represents the true specification, and it needs to be
understood whenever changes are required, or software
has to be re-used in a new generation of hardware.
Theoretically, reverse engineering should assure that the
code and specification are synchronized but: firstly,
reverse engineering never works reliably and secondly,
which is much more important, we are presented with the
same problem as with coding. Once a programmer starts
coding, there is no way to force him to take care about
documentation, specification, and similar non-vital
activities.

Advocates of Agile Methods [8], such as Extreme
Programming have understood this problem, so they
advise just getting started with coding, because only it
will express the final specifications. There are two main
problems with XP. The first is that modern programming
languages are gaining complication faster than they are
gaining power, so that code behavior is almost impossible
to understand, in all but the more straightforward
circumstances. The second, perhaps explained most
clearly by the late Edsger Dijkstra, is that we can never
hope to produce reliable software by means of a testing
and patching process, without help from some other
processes. A good feature of XP is the way in which user
stories are employed, to generate tests, and are built up
gradually into a complete test suite, but we must
emphasize that these tests will need to cover all possible
fault paths, and not just the desired scenarios.

StateWORKS avoids the difficulties described above
by steering a middle way. A StateWORKS user
simultaneously defines abstract models and implements
them, generating data rather than code. Furthermore, the

StateWORKS FSM model is very basic and easy to learn,
so that programmers need not "lose" a lot of time learning
complex UML tools which might not in the end save
much effort.

The StateWORKS designer, using FSM transition
diagrams and the associated textual data, is in fact
working on the implementation, which is not coded of
course, but corresponds at the same time to the real
behavioural specification - what the software will really
do. He is able to design at a more abstract level than
code. Devotees of Agile Methods can employ
StateWORKS as one powerful tool among several in their
arsenal, in the same way that they might use a State-
Machine Compiler (SMC) [8 - Pages 429 to 431].

We believe that StateWORKS can fulfil many of the
requirements of Executable UML [6], in a way which can
also utilise the essentials of the Agile Programming
working practices to good effect, while avoiding the need
to generate complex program code. (We would, however,
prefer transitions to be governed by more generalised
inputs than the evanescent signals proposed by Mellor &
Balcer.)

3.3. FSM Creation

The FSM design process, carried out using the
StateWORKS editor (Figure 3), involves defining and
naming each FSM and creating states, which are named
and then fully specified. A graphical editor is usually
preferred, but a tabular text presentation is also developed
in parallel and this holds the complete FSM definitions.
States are added to the transition diagram, and transition
vectors drawn between them. The StateWORKS I.D.E.
provides a context-aware editor, which can display the
pure FSM transition diagram in graphical form and also
bring up detail in text form, as for instance all the detailed
actions associated with a state, as well as the transition
conditions. The editor is aware of all the defined objects
which might be invoked, and simultaneously links FSMs
to the RTDB. It is able to deal with multiple FSMs in
a project, and with the various communication
mechanisms provided.

Figure 3. StateWORKS editor

 Concurrently with the FSM design, as all the
transition conditions are developed, the designer will
need to give a formal name to each term in a condition:
these are chosen to be meaningful, are held in an Input
Name list by the editor, and can be used in other
expressions. I/O objects are held in the RTDB, in fact,
and they have a defined structure, with an I/O Object ID
and a set of Values. A timer, for example, as an input, has
values corresponding to RESET, STOP, RUN,
OVER and OVERSTOP, while it can receive outputs
for Reset, Stop, Start etc. which can be actions from an
FSM state.

For each state entry actions, exit actions and input
actions may be defined, in a similar way, by adding
Output Names to a list. These details are not normally
shown on the transition diagram, as they would make it
too complex to read, but are instantly available when any
state is selected.
 For most of the inputs and outputs which one might
use, there exist already-defined objects for the RTDB.
This can be used at two skill levels, in that a complete
ready-compiled RTDB with all the common objects is
available, and there is also a StateWORKS RTDB Class
Library for use by skilled programmers with special
requirements.

We should point out that the availability of many
standard RTDB objects implies a high degree of software
re-use for many input-output functions, so saving much
time for the programming team.

As the design proceeds, the corresponding Control
Specification is created, and the RTDB populated. These
may be tested at various stages, either in the development
environment or in a target system. A basic simulation
capability is offered by a tool called SWLab, and this will
often be adequate, but more complex simulations might
require some ancillary software to be written, perhaps in
Visual Basic if the I.D.E. is hosted in a Microsoft
Windows NT/2000/XP system. It is common to test each
FSM design against the perceived requirements, using
“User Stories” or ‘Use Cases” to generate the tests, after
a first visual check – a sort of mental simulation.
Frequently the visual run-through of various cases is
sufficient to show up errors in the design, including the
effects of various faults. Running tests, simulations and
reviews will frequently cause the entire structure to be
revised, several times, during development.

As problems arise in the implementation, the designer
might wish to show the FSM transition diagram, and
indeed the full data, to colleagues, and discuss what
should occur in special cases. The presentation is
relatively easy to comprehend, as there are very few
symbols to be learned and the designer can show his
colleagues what is happening even if they do not fully
comprehend the FSM techniques.

3.4 The Run-Time System

When the designer has created the full system, written

any special software that is needed, and tested and
simulated all he can, the results can be loaded to the
target system and run there. There is no compilation or
equivalent process required for the StateWORKS part of
the project, and the run-time system executes the
specifications directly.

4. StateWORKS in Practice

StateWORKS concepts have been applied to a wide

variety of projects, over a 12-year period [9, 10]. These
have ranged from industrial controls and specialised
measurement systems to telecommunications switching
and protocol handling. The projects have not been trivial:
the first implementation of the VFSM principle was for a
semiconductor production line, using mini-computers, in
1988-1990. It is in wide use at Lucent for their
international telecom switching products [11, 12] and has
been shown to reduce development cost and also improve
quality.

The full StateWORKS system with the RTDB has
been in use for about five years, and has been very
successful wherever applied. A typical project undertaken
was where a team of 10 programming staff had great
difficulty in coping with maintenance of many versions
of a basic product, and new projects were becoming hard
to deal with. A grass-roots project was commenced, with
the aim of replacing all the existing software by new
versions based on StateWORKS. This took 18 months, as
there were special safety requirements, a need for a
sophisticated user interface, and specialised
computations for the data acquired, but at the end a team
of 5 persons was able to deal with all needs, and the
software was considered the best package in that
particular market segment.

Because the StateWORKS tools impose a certain
structure on the software, it has sometimes been possible
to successfully and rapidly complete a project which had
been though to be impossible, on account of its apparent
complexity. If a complex project is hard to comprehend,
then coding in the classical way, with any available
language, will not make it easier to understand, and
failure can result.

At the time of writing, StateWORKS is being
introduced into two major multi-national companies. A
list of past projects may be seen at the StateWORKS web
site [13].

Because the StateWORKS concepts are very simple
and basic, the programmer need not invest too much time
in learning them, and can start applying them very
quickly. This contrasts with some more complex tools,

which require a major investment to master, and then
produce results which are not always felt to justify that
effort.

5. Further Work.

The already very extensive StateWORKS Class

Library, which is the foundation for the RTDB, has new
functions added from time to time, and this process will
continue.

 A certain number of improvements are being made to
the Editor and other aspects of the I.D.E.

Work is already quite advanced on defining a
standard implementation-independent XML data type
description, which will simplify the passing of FSM
specifications between various tools, including UML, and
we are looking for a way to start discussions of this topic.

6. Conclusions

The concepts presented in this paper have resulted in

a new modelling and implementation paradigm for
control systems. Although the designs use a conventional
system behavior description in the form of state
machines, the implementations are very different in
comparison with typical control software. The software
control flow is not programmed any more, but it is
implemented by a universal execution unit that executes
the control specification in the form of binary or text
files. The specification model is prepared and tested by
means of development tools including editors, validators,
simulators and monitors [13].

StateWORKS offers a very high degree of software
re-use, and of avoidance of coding. This can yield great
increases in productivity, which we shall need if great
advances in the complexity of the hardware we can
now build at low cost (cf. Moores Law for IC density)
are to be fully utilised. Companies offering a range of
similar products may re-use many of their FSM designs
with confidence, and can adapt existing designs to new
target hardware without the need to analyse complex
code written for the previous generation.

Why is it so effective? The main reason is surely that
the software is constructed in simple units, and the FSM
model we employ forces each FSM in particular to
conform strictly to the definition of its interfaces. Similar
concepts have been used for many years in other
branches of engineering.

A major problem encountered in most initiatives to
reduce or automate coding is the diversity of input/output
signals in embedded systems: these normally require
laborious programming. The StateWORKS concepts of
the "virtual environment" and of "positive-logic algebra"
permit the software behaviour to be fully and rigorously

specified while isolating the input/output particularities
from that specification, thus reducing the perceived
complexity of the software.

Though the technical concept has been tested and
proven in many applications the introduction of these
new development and execution tools has not been an
easy matter. The main problem for programmers seems to
be the acceptance of tools that are not freely programmed
and which limit their task to the preparation of a formal
specification. A true software engineer should be glad to
avoid the coding of the control flow [14].

7. Acknowledgements

The idea was born many years ago. To prove its
usefulness and to reach a stage of working development
and execution tools required the involvement of many
others. R. Schmuki has had the most influence on the
proper definitions of object properties. Due to his support
and work we have now working tools. A. Flora-
Holmquist, J. Dobrowolski, D.Smith and N. Chaffee were
the driving persons at AT&T and made the introduction
of the concepts into the telecommunication sphere a
success. To them, as well as many other persons who
helped us during innumerable discussions, we should like
to express our acknowledgments. We are also indebted to
the anonymous reviewers for their helpful suggestions
and comments.

8. References

[1] Edward A. Lee: "Embedded Software - An Agenda for
Research", UCB ERL Memorandum M99/63 (December 1999).
(Available on-line at eecs.berkeley.edu/publications.)

[2] Aki Nimura: "SCC-II Microsequencer", Xilinx "XCELL
Journal" issue 42, Spring 2002, page 72. (Available on-line at
www.xilinx.com/literature.)

[3] David Harel: "Executable Object Modeling with
Statecharts", IEEE "Computer" July 1997, pp. 31-42.

[4] Miro Samek, "Practical Statecharts in C/C++" CMP
Books, 2002.

[5] J. Caroll, D. Long, Theory of Finite Automata with an
Introduction to Formal Languages. Prentice Hall, Englewoods
Cliffs, N.J., 1989.

[6] Stephen J. Mellor and Marc J. Balcer, Executable UML.
Addison-Wesley, 2002.

[7] Shige Wang and Kang G. Shin: "An Architecture for
Embedded Software Integration Using Reusable Components",
Proc. International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, ACM, November 2000.

[8] Robert C. Martin, Agile Software Development. Prentice-
Hall, 2002.

[9] F. Wagner, "VFSM Executable Specification" Proceedings
of the International Conference on Computer System and
Software Engineering. The Hague, Netherlands, 1992, pp.226-
231.

[10] F. Wagner, The Virtual Finite State Machine: Executable
Control Flow Specification. Rosa Fischer-Löw Verlag, Gießen,
1994.

 [11] A. R. Flora-Holmquist, J.D. O’Grady, M.G. Staskauskas,
"Telecommunications Software Design Using Virtual Finite-
State Machines“, Proceedings of the International Switching
Symposium (ISS ‚95). Berlin, Germany, 1995, pp. 103-107.

 [12] A. R. Flora-Holmquist, E. Morton, J.D. O’Grady, M.G.
Staskauskas, "The Virtual Finite-State Machine Design and
Implementation Paradigm“. Bell Labs Technical Journal.
Winter 1997, pp. 96-113. (Available on-line at
www.lucent.com/minds/ - search for VFSM).

[13] For further information and references, see
http://www.stateworks.com.

[14] Terri Maginnis, "Engineers Don't Build," IEEE Software,
Jan.-Feb.2000, pp.34-39.

 Appendix A: Finite State Machines (FSM).

A finite state machine, sometimes called a finite

automaton, is a system whose condition depends not just
on external stimuli, but on the history of those stimuli.

A very simple example is a keyboard, which might be
in the normal, initial state, or the caps-lock state,
depending on the number of times the Caps Lock key has
been pressed. Although programmers are often
introduced to FSMs in the context of parsing input text
for compilers, the concept is very much more general,
and applies to most "reactive systems" in which internal
processes are governed or influenced by external events.
In such systems the FSM does not merely run through a
sequence, producing an end result, but it normally
operates throughout the period when the system is able to
function.

The academic definition of an FSM is a "quintuple" A
= <Σ, S, S0, δ, F> where Σ is an alphabet, S is a finite,
non-empty set of states, S0 is a set of initial states,

 δ:S x Σ→ρ(s) is a transition function, and F is the set
of accepting states (perhaps empty). This is perhaps not
too helpful to the practitioner, but quite an amount of
theory can be found in the various text-books if he is
mathematically inclined. A key point is, however, the
input alphabet Σ, which defines the stimuli to which the
FSM will react, and this is discussed in some detail in the
body of the paper.

A weak point of the above definition is the absence of
actions. One might think that the task of the state
machine is to change states until it reaches an end state
Fn, and there is a class of state machines called
"deterministic" which need to do this. (For example,

parsing text and reporting when specific sequences are
detected.) The true task of the generalised state machine
is to trigger actions according to situations defined by the
present state and stimuli.

FSMs are normally described in a diagrammatic form,
using a circle to represent each state, and lines with arrow
heads to represent transitions between the various states.
The addition of detail explaining what will provoke any
transition is often difficult to achieve, and a text
description of the FSM is then needed.

As the FSM functions, changing state from time to
time, it will provoke actions in other parts of the system,
as required for the specific project.

An FSM will often seem to be very easy to design,
and will require a modest number of states - say about a
dozen - to perform its task. Then, when the designer
considers what might go wrong in various ways with the
external system, he is forced to add many states to handle
these errors, and the whole FSM becomes very hard to
understand or deal with. This is referred to as "state
explosion"1 and there is a solution: split the FSM into
several different FSMs which are linked together, and
where each one deals with a part of the problem. In very
large systems, one will find that many of the error-
handling processes are almost identical, and this can save
time in the development phase by permitting re-use of
some FSM designs.

Although the essential concepts of the FSM are quite
easy to learn, their use to design complex systems will
necessarily require some experience, and even talent, if
effective and elegant solutions are to be created.

1 The term "state explosion" is also used in validation techniques of
protocols, effectively state machines (see for instance Design and
Validation of Computer Protocols by Gerald J. Holzmann) but it has
there a different meaning.

