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Abstract 
Agile Software practices place great emphasis on 

coding, yet coding is time-consuming, difficult, and the 
source of many errors. The paper describes a way in 
which the specification and implementation processes 
can be unified, and much coding avoided as regards the 
behavioural aspects of the software. It shares much in 
common with Agile Methods, yet permits a significant 
degree of modeling to take place. This VFSM technique 
and its commercial implementation StateWORKS has 
been used for several years in a variety of projects, large 
and small, in industrial control and in 
telecommunications. It gives significant benefits in time-
to-market, in reduced maintenance, and in accuracy of 
the final project documentation. It facilitates software re-
use and system up-grading. It has potential to link up the 
“Executable UML” and “Agile Modeling” initiatives, to 
their mutual benefit. 

 
 

1. Background 

1.1 Desktop Packages Compared with 
Embedded System Software 

 
Much software now in use is developed for PC and 

work-station applications, and, considering its 
complexity, is often quite reliable. This is achieved 
through very arduous testing by the production team, 
followed by much more testing by users, of beta versions, 
and then, after the issue of the third major release, the 
product becomes stable and reliable, although rarely 
perfect.  Another factor helping to ease the development 
of such software is the existence of a huge software 
library, or A.P.I. library, holding functions which are well 
defined, and rather easily tested by their developers, and 
providing a possibility for massive re-use of such 
software components in a variety of projects. 

 
 
 
Taking a look at the situation for software of 

embedded systems, which must control complex prcesses  
which are strongly influenced by the external 
environment, we see a less favourable situation. Although 
many tested A.P.I’s will be available, for operator 
interfaces, input-output processing, signal processing and 
the like, the essential process will require software to be 
written from scratch.  There will be no standard A.P.I. for 
"Run a blast furnace". 

Such software will need to express the behaviour 
required of the system, and this will normally become 
very complex when all the various errors and problems 
which could arise are taken into account. It is usual to 
write it in a language such as C++ or C, and this code 
becomes very hard to read, for modification or for 
maintenance purposes: however, the code becomes the 
only expression of the system behaviour, and contains 
details which were never part of the initial written 
specifications. It is very hard to see what will happen in 
unusual, but possible, circumstances, and tests have to be 
arranged, but there is rarely enough time to do all 
possible tests. 

Most software for embedded systems is in fact a 
prototype, which could never be tested as intensively as 
mass-market software, but the users expect high 
reliability. Even safety-critical software is often 
developed by companies using fewer resources than are 
available to mass production software firms. A more 
secure development process is becoming essential, 
although overdue. 
_____________________________________________ 
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1.1. Dangers of Coding 
 
It is becoming clear that special coding for a new 

project is a dangerous activity, and that it is very hard to 
manage the development process. The code will be 
intrinsically unreliable, and often causes project delays 
while it is being fixed.  

It is the purpose of this paper to outline an approach 
which eliminates some of the problems, by avoiding 
certain parts of coding, and imposing a strict discipline on 
the software structure. The techniques described below 
have been applied to a variety of projects over more than 
a decade, and are not limited to the implementation of 
software for embedded systems.  Essentially, rather than 
coding this area of software, we express it in a formal and 
abstract way, as a specification, and then execute a fixed 
program to process the specification.  Because the fixed 
program has been in use, without change, for some years, 
it is totally reliable, and it acts on data which is the 
specification in a condensed and specialised format, for 
efficiency. 

Although this idea is not new, the way in which it is 
applied in combination with other features provides a 
very powerful tool for implementing software for 
complex systems. 

 

2. Major Features. 

2.1. Separation of Control Flow from Data 
 
We consider that much complexity arises from the 

intermingling of computations of various sorts with the 
control statements, as this makes it difficult to retain 
awareness of all the assumptions implied in one part of 
the code, but which will affect other sections. The control 
flow, to which we give the classical meaning, namely the 
majority of statements of the nature of " if..then..else,  
do…while,  switch….case..." defines the behaviour of the 
software. We extract all of this, separating it from all the 
numerical calculations or algorithms, and express it in a 
finite state machine form. (For those unfamiliar with this 
concept a short explanation is given in Appendix A.) 

2.2. Finite State Machines 
 
Although finite state machines (FSM) have long been 

considered a useful tool for the programmer, it is still 
common today to see allegations that, when applied to 
real-life projects, they become too unwieldy to program, 
and too complex to understand [1, 2]. This view is not 
correct, but certain techniques need to be employed if 
they are to be used successfully.  Essentially, a software 

project, as regards the control flow, needs to be split into 
a number of FSMs, suitably inter-linked. 

Several writers have tried to make this clear. David 
Harel, with StateCharts, suggests using a hierarchical 
structure, with inheritance [3].  We advise the use of a 
number of FSM arranged in a hierarchy, but do not insist 
on this in all cases. We dislike the "nesting" idea, where a 
state can contain a complete, subsidiary FSM, but rather 
suggest a flat arrangement where each FSM has its own, 
rather clean definitions.  The basic rule is that a lower-
level FSM presents its state to the upper levels, and the 
upper levels can pass commands to the lower levels: 
rather like an army. (There are some ways of getting 
round the rules, but they should be employed with 
discretion.) All upper-level machines have access to 
states of lower-level machines, and we prefer not to speak 
of inheritance in this context. Let it suffice to point out 
that, at any given instant, the state of the entire system is 
expressed as the set of all the states of the individual 
FSMs composing it. 

A good textbook explanation of FSM applications is 
given in Ref. [4] , and the author provides quite a wide 
range of examples of FSM application, both singly and 
with a hierarchical structure. 

We use a very simple and classical text-book form of 
the FSM [5], limited to a set of states, transitions, and 
associated actions (Figure 1) and similar to that proposed 
for finite state machines in Executable UML [6]. In the 
transition diagram the states are the vertices of a graph, 
and the transitions may be arranged as needed. Several 
transitions from any specific state to one other are 
allowed. Situations where the same transition might occur 
for several rather different reasons are catered for by 
allowing a complex logic expression to govern each 
transition. 

2.3. Virtual Inputs 
 
For practical and theoretical reasons, the expressions 

which regulate the transition conditions of each FSM are 
expressed in a special form of binary algebra, which we 
call positive-logic algebra. Each term is an assertion of 
some aspect of the system outside the FSM, and is called 
a "Virtual Input" because it is derived from a real input 
signal which may be digital, analog, a timer, an event etc.  
Various terms may be combined in a binary expression, 
using AND and OR operators only. (AND takes 
precedence over OR.)  The NOT operator is forbidden. 
This is because an absence of an assertion, such as 
"Valve_Open", does not necessarily have a meaning such 
as "Valve_Closed" as there could be some other input 
state such as "Valve moving" or 
"Valve_Position_Unknown".  Many quantities are 



 

analog, and need to be transformed into virtual inputs 
such as "Pressure_Low, Pressure_Good, Pressure_High".   

Although it is obvious that the NOT operator will be 
hard to use in situations where the value has three or 
more meaningful states, we prohibit its use even when the 
input is clearly binary, so that the transition conditions 
are always made up of positive assertions of various 
sorts. The programmer is, naturally, quite free in the way 
he wishes to generate and use them. By use of the 
positive-logic algebra, the software for enumeration of all 
the expressions becomes very efficient indeed. 

Another way of regarding the Virtual Inputs is to 
consider them as a virtual lower layer, presenting an 
FSM-style interface to the real FSM's we are to design. 
The Virtual Input to the entire system is a set of input 
states, each under the control of some specialised 
input/output software described below. The states are 
visible to the upper layers, for use in the transition 
expressions. For example, a motorised valve might have 
five possible states such as OPEN, CLOSED, OPENING, 
CLOSING, FAULT. A NOT operator, applied to any of 
these states, is rather meaningless as it could imply any 
one of the other four states. 

On account of the use of Virtual Inputs, the 
techniques were given the name "Virtual Finite State 
Machine" (VFSM).  

 
 

2.4. Actions 
 
At various stages in the operation of the software, the 

FSM must act on other parts of the system, by issuing 
commands, setting new parameters, sending signals, 
starting timers etc.  We use the term "Action" for such 
stimuli, and there are three basic categories (Figure 1): 

-      Entry actions occur at entry to a given state, and 
correspond to the classical Mealy automata in FSM 
theory. 
-     Exit actions occur at the exit from a state: these 
are slightly less commonly used. 
-  Input Actions are actions which, although 
associated with some form of input condition or 
signal, do not necessarily cause a state change, but 
need to cause an output of some nature. These 
correspond to the Moore model of automaton.  

It must be stressed that these actions are not associated 
with specific transitions but with states. 

The designer will need to establish an "Output Name" 
for each action he requires in the system, and the FSM 
operations will cause "Virtual Outputs" to be generated. 
These are handled elsewhere.  

2.5. Direct Execution without Coding 
 
In design of the various FSMs in his system, the 

programmer will need to specify all the Virtual Inputs, 
using Input Names. He will have prepared all the 
transition expressions, and defined actions to be 
performed or invoked at various stages in the process. All 
this work is performed using a specialised editor, with a 
graphical presentation of a state-transition diagram 
coupled to a tabular presentation of all the fine detail.  At 
the conclusion of this process, a file is generated, 
expressing the complete structure in a compressed 
format.   This is called the "Control Specification".     

At any time during the process, the designer may run 
some simulations and other tests, in order to see how the 
system will behave in various conditions. Such 
simulations run on the same data - the Control 
Specification - as will be used in the target application.   
When the designer is happy, and has perhaps also shown 
the running process to his supervisor or to his customer, 
the Control Specification is loaded to the target system, 
together with the program which we call the VFSM 
Executor.  Some form of input-output software package 
is also needed, and this is described below. 

 

 
 
          

Waiting E: Timer_Start

C:

X: Timer_Stop

Door_Open Lamp_On

Idle Timeout | Cmd_Stop
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Figure 1.  State specification: graphical (a) and 
tabular (b) forms 
 

It is important to realise that no run-time code is 
compiled in this process. In a sense, no new software is 
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generated, and we see software re-use pushed to an 
extreme. (A similar approach is described in [7]). Of 
course, one might consider the Control Specification to 
be a high-level language, but it is not the usual procedural 
language, as it may have many concurrent activities 
rather than expressing a single thread, and indeed a major 
system might have some hundreds of FSMs in operation, 
all implemented by means of the single VFSM Executor, 
and existing at the same time.  

The Control Specification is an expression of a very 
few, basic concepts such as states, virtual inputs, and 
transitions, and it is extremely efficiently implemented by 
the VFSM Executor. Many thousands of state transitions 
per second can be handled in a practical system, using a 
modern c.p.u., depending on what other functions need to 
be dealt with at that time, of course. The VFSM concept 
can be easily applied to multiple-processor systems, using 
a LAN.  

This technique goes far beyond the conventional idea 
of setting out a state-transition table and implementing 
FSMs by means of an interpreter, as a state-transition 
table of classical structure can not easily cope with very 
complex transition expressions and there is a risk that 
these will have to be implemented and documented 
elsewhere. The Virtual Input concept is the essential key 
to both making the execution process efficient, and 
showing adequate detail about transition conditions at the 
abstract level of the state machine design.  

Because there is no compilation of code, all revisions 
have to be made at the abstract level of the specifications, 
which means that these specifications really express all 
the details and can not be out of date. 

 

 
 
Figure 2: StateWORKS Execution Environment 

 

2.6. Treatment of Inputs 
 
The VFSM executor runs in what we term a "virtual 

environment" whereby the inputs which reach each FSM 

are not the real, varied and sometimes complicated items 
found in the system, but have been transformed into 
virtual inputs, as described in section 2.3 above. (Similar 
considerations apply to the outputs.) 

At any time, the Virtual Input contains the complete 
information about the control conditions in the system, 
and it is in fact a set. For instance, the virtual input 
{DI_LOW , TI_STOP} means that the digital input has the 
control value LOW, the timer has been stopped and the 
control values of other inputs are unknown. 

We introduce a control property for each object and its 
usage in the following way: 

Each object has a control value which is a number. Each 
object has its definition of the control value that describes 
the calculation algorithm and range. To make it more 
understandable we use names for control values instead 
of numbers. The name of the control value is the object 
control property.  

     An example might be a measurement of the level of liquid 
in a tank. Rather than using the numerical value of the 
measurement, such as gallons, we establish “switch points” 
from which we derive control properties such as 
“LEVEL_LOW,  LEVEL_OK, LEVEL_HIGH” which are 
available to supply the virtual input. By this means, the 
specific details of inputs and outputs, which might require 
much more complex treatment than implied in the above 
examples, such as parsing messages, are isolated from the 
VFSM design work. This approach has a number of 
advantages: 

1. Simplification of the VFSM design work by 
removal of extraneous considerations. 

2. Easy alteration of parameters if a design change is 
required at a later stage. 

3. Easy alteration of parameters if required during 
operation of a process. 

4. Isolation of input signal processing, which allows a 
great deal of software re-use when many similar 
functions are encountered in a system. 

5. The VFSM editor (Figure 3)  is made aware of all 
the control properties, input names, output functions 
etc. which have been set up, and can check for 
consistency of the entire design. 

6. System behavior can be examined before much 
specialized programming work starts, by just 
assuming that the virtual environment can be 
specified at the start but will be implemented in 
detail at a later stage.  
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7. Apparent simplification of a complex project, 
allowing it to be handled when previous approaches 
have failed.  (Obviously, it will still be complex and 
require a good deal of design work !) 

There is therefore a need to generate all the control 
properties from real-world inputs such as analog-to-
digital converters, timers, counters, digital sensors, 
events, commands, messages etc. and a considerable set 
of routines for this has been developed over the years.  
Originally, these were assembled into a package known 
as the I/O Unit, but in recent years a more versatile 
approach has been developed, using a Real Time Data 
Base (RTDB) and the entire product is commercialised 
under the name of StateWORKS (Figure 2). It is written in 
C++. 

2.7.  The RTDB 
 
The RTDB centralises all information regarding 

states, signals, inputs, outputs and messages. It holds the 
Control Specification and all Object Properties. In 
Microsoft Windows NT/2000 systems it acts as a DDE or 

 a COM server, so that other software in the system 
may interact with the StateWORKS components. 
Versions for operating systems based on UNIX, such as 
Linux, Sun Solaris or VxWorks are provided with similar 
facilities, using POSIX or operating system specific calls 
as a rule. TCP/IP  communication  is  supported.   The 
RTDB holds the linkages between the physical 
input/output signals and the virtual environment: these 
are set up using the StateWORKS editor, and in many 
instances standard library items can be taken, and merely 
configured.  
   User interface software, and local or remote monitoring 
and   debugging features, are easily connected to the 
RTDB.  A wide range of standard API functions is 
provided, so that in some extreme cases a highly complex 
control system may be developed with almost no classical 
coding. A comprehensive API manual is supplied. New 
functions may be easily added as required. The RTDB 
contains a variety of standard object types with the 
control values shown in Table 1.  
     There are two types of objects in the RTDB: input and 
output objects. Input objects can influence system 
behaviour. and they have control values.   Output objects 
have no influence on control and therefore they do not 
have control values. 
 
 
Table 1: RTDB Objects 
 
 

 
 
 
 

Object Description Value Control value 

VFSM State machine State (Number > 0, 
    User defined Name) 

State (Number > 0, 
    User defined Name) 

CMD Command Command (Number > 0, 
    User defined Name) 

Command (Number > 0, 
     User defined Name) 

TI Timer Counter state OVER, OVERSTOP, RESET, 
RUN, STOP 

CNT, 
ECNT 

Counter 
Event counter 

Counter state OVER, OVERSTOP, RESET, 
RUN, STOP 

UDC Up/Down counter Counter state CHANGED, DEF, INIT 
SWIP Switchpoint Object to be supervised HIGH, IN, LOW, OFF 
XDA Memory Number > 0 Number > 0 
OFUN Output function Number Number 
DI Digital input Boolean value LOW, HIGH 
NI, DAT, 
PAR 

Numerical input, Data, 
Parameter 

Value  CHANGED, DEF, INIT 

DO Digital output - - 
NO Numerical output - - 

AL Alarm - -  
TAB Table - - 
UNIT I/O Unit - - 



 

3.   The Development Process 

3.1 General Strategy 
 
The development process for StateWORKS is, to some 
extent, a matter of style and of experience, and there can 
be several reasonably good ways of designing any given 
system. There are some aspects of the process which are 
different from common practice in high-level modelling. 
Although any design needs first to be studied at the 
overall level, we suggest following the rule "top-down  
design: bottom-up implementation" which held for 
coding. Thus, the initial overview identifies some 
functional elements which should be implemented 
separately before combining into the whole.  

In a typical embedded-system project, one then starts 
with the lowest level of FSMs, directly controlling or 
monitoring the hardware.   Then the next level up can be 
designed,  to  issue  commands to the bottom level and  to 
monitor its activities. The complete design proceeds in 
this way, and at frequent intervals the FSMs are tested, 
 by a simulator, and their behaviour in all possible 
situations examined, and indeed discussed with other 
members of the project team whenever a relevant issue 
arises. As this process continues, it will very often be 
found that the initially-planned structure has to be 
revised, because the complete system specifications 
which were the starting-point of the project were not 
complete in all respects. Readers familiar with the 
concepts of Agile Software Development will recognize 
some of them in the above description. 

Of course, other FSM structures may be needed, and 
we do not wish to impose a strict hierarchy for all 
situations. Several groups of FSMs might be required in a 
project, with no strong inter-communication between 
them. Another problem might arise in knowing where 
and how to start, if there is no clear base level: this was 
encountered recently in the implementation of a very 
complex communications protocol, where the designer 
just had to start somewhere, and work through the system 
until he arrived at a good solution, using five FSMs in 
fact. 

The design process outlined above can be completed 
before many of the algorithms which will eventually be 
needed have been developed, as it avoids handling data. 
Testing and design reviews can then be performed in the 
virtual environment, until the designer is confident that 
he has an effective solution.   Following this, the various 
RTDB objects need to be finalised, and remaining 
functions programmed in the usual way. In practice, there 
will be some degree of iteration as detail design issues 
can impact on the FSM structure, to a limited extent. 

 

3.2. Comparison with Other Methods 
 
      We are in agreement with proponents of Statecharts 
and UML to the extent that we believe that software 
development methods must move towards automatic 
implementation of abstract specifications, and away from 
coding. But in practice, such methods have a major 
problem, in that when one starts with a high-level project 
specification, and works gradually downwards, the final 
result can never be complete. As a rule, top-down design 
does not work for control flow: we have to start with a 
vague idea about the main (upper) state machine and do 
the detailed specification of the lower level state 
machines. Then we get some feeling for the intermediate 
levels of state machines and work through these until we 
reach the main state machine. 
      It is quite impossible to foresee, from the start, all the 
small details which will have a critical influence on the 
way in which the final code will work. The end result is 
that, after going as far as possible with, say, UML, one is 
obliged to start coding, and this coding diverges from the 
beautiful UML model one created. Finally, only the code 
represents   the   true   specification,   and  it  needs  to  be  
understood whenever changes are required, or software 
has to be re-used in a new generation of hardware. 
Theoretically, reverse engineering should assure that the 
code and specification are synchronized but: firstly, 
reverse engineering never works reliably and secondly, 
which is much more important, we are presented with the 
same problem as with coding. Once a programmer starts 
coding, there is no way to force him to take care about 
documentation, specification, and similar non-vital 
activities.  

Advocates of Agile Methods [8], such as Extreme 
Programming have understood this problem, so they 
advise just getting started with coding, because only it 
will express the final specifications. There are two main 
problems with XP. The first is that modern programming 
languages are gaining complication faster than they are 
gaining power, so that code behavior is almost impossible 
to understand, in all but the more straightforward 
circumstances. The second, perhaps explained most 
clearly by the late Edsger Dijkstra, is that we can never 
hope to produce reliable software by means of a testing 
and patching process, without help from some other 
processes. A good feature of XP is the way in which user 
stories are employed, to generate tests, and are built up 
gradually into a complete test suite, but we must 
emphasize that these tests will need to cover all possible 
fault paths, and not just the desired scenarios. 

StateWORKS avoids the difficulties described above 
by steering a middle way. A StateWORKS user 
simultaneously defines abstract models and implements 
them, generating data rather than code. Furthermore, the 



 

StateWORKS FSM model is very basic and easy to learn, 
so that programmers need not "lose" a lot of time learning 
complex UML tools which might not in the end save 
much effort. 

The StateWORKS designer, using FSM transition 
diagrams and the associated textual data, is in fact 
working on the implementation, which is not coded of 
course, but corresponds at the same time to the real 
behavioural specification - what the software will really 
do. He is able to design at a more abstract level than 
code. Devotees of Agile Methods can employ 
StateWORKS as one powerful tool among several in their 
arsenal, in the same way that they might use a State-
Machine Compiler (SMC) [8  - Pages 429 to 431]. 

We believe that StateWORKS can fulfil many of the 
requirements of Executable UML [6], in a way which can 
also utilise the essentials of the Agile Programming 
working practices to good effect, while avoiding the need 
to generate complex program code. (We would, however, 
prefer transitions to be governed by more generalised 
inputs than the evanescent signals proposed by Mellor & 
Balcer.) 

3.3. FSM Creation 
 

The FSM design process, carried out using the 
StateWORKS editor (Figure 3), involves defining and 
naming each FSM and creating states, which are named 
and then fully specified. A graphical editor is usually 
preferred, but a tabular text presentation is also developed 
in parallel and this holds the complete FSM definitions.    
States are added to the transition diagram, and transition 
vectors drawn between them. The StateWORKS I.D.E. 
provides a context-aware editor, which can display the 
pure FSM transition diagram in graphical form and also 
bring up detail in text form, as for instance all the detailed 
actions associated with a state, as well as the transition 
conditions. The editor is aware of all the defined objects 
which might be invoked, and simultaneously links FSMs 
to the RTDB.   It is able to deal with  multiple  FSMs  in 
a project, and with the various communication 
mechanisms provided. 

 
Figure 3.  StateWORKS editor  
 



 

      Concurrently with the FSM design, as all the 
transition conditions are developed, the designer will 
need to give a formal name to each term in a condition: 
these are chosen to be meaningful,  are held in  an  Input  
Name list by the editor, and can be used in other 
expressions. I/O objects are held in the RTDB, in fact, 
and they have a defined structure, with an I/O Object ID 
and a set of Values. A timer, for example, as an input, has 
values corresponding  to   RESET,    STOP,    RUN,   
OVER   and OVERSTOP, while it can receive outputs 
for Reset, Stop, Start etc. which can be actions from an 
FSM state. 

For each state entry actions, exit actions and input 
actions may be defined, in a similar way, by adding 
Output Names to a list.  These details are not normally 
shown on the transition diagram, as they would make it 
too complex to read, but are instantly available when any 
state is selected. 
     For most of the inputs and outputs which one might 
use, there exist already-defined objects for the RTDB. 
This can be used at two skill levels, in that a complete 
ready-compiled RTDB with all the common objects is 
available, and there is also a StateWORKS RTDB Class 
Library for use by skilled programmers with special 
requirements.  

We should point out that the availability of many 
standard RTDB objects implies a high degree of software 
re-use for many input-output functions, so saving much 
time for the programming team. 

As the design proceeds, the corresponding Control 
Specification is created, and the RTDB populated.  These 
may be tested at various stages, either in the development 
environment or in a target system. A basic simulation 
capability is offered by a tool called SWLab, and this will 
often be adequate, but more complex simulations might 
require some ancillary software to be written, perhaps in 
Visual Basic if the I.D.E. is hosted in a Microsoft 
Windows NT/2000/XP system. It is common to test each 
FSM design against the perceived requirements, using 
“User Stories” or ‘Use Cases” to generate the tests, after 
a first visual check – a sort of mental simulation. 
Frequently the visual run-through of various cases is 
sufficient to show up errors in the design, including the 
effects of various faults.  Running tests, simulations and 
reviews will frequently cause the entire structure to be 
revised, several times, during development. 

As problems arise in the implementation, the designer 
might wish to show the FSM transition diagram, and 
indeed the full data, to colleagues, and discuss what 
should occur in special cases. The presentation is 
relatively easy to comprehend, as there are very few 
symbols to be learned and the designer can show his 
colleagues what is happening even if they do not fully 
comprehend the FSM techniques. 

3.4 The Run-Time System 
 
When the designer has created the full system, written 

any special software that is needed, and tested and 
simulated all he can, the results can be loaded to the 
target system and run there.  There is no compilation or 
equivalent process required for the StateWORKS part of 
the project, and the run-time system executes the 
specifications directly. 

4.  StateWORKS in Practice 
 
StateWORKS concepts have been applied to a wide 

variety of projects, over a 12-year period [9, 10]. These 
have ranged from industrial controls and specialised 
measurement systems to telecommunications switching 
and protocol handling. The projects have not been trivial: 
the first implementation of the VFSM principle was for a 
semiconductor production line, using mini-computers, in 
1988-1990. It is in wide use at Lucent for their 
international telecom switching products [11, 12] and has 
been shown to reduce development cost and also improve 
quality.  

The full StateWORKS system with the RTDB has 
been in use for about five years, and has been very 
successful wherever applied. A typical project undertaken 
was where a team of 10 programming staff had great 
difficulty in coping with maintenance of many versions 
of a basic product, and new projects were becoming hard 
to deal with. A grass-roots project was commenced, with 
the aim of replacing all the existing software by new 
versions based on StateWORKS. This took 18 months, as 
there were special safety requirements, a need for a 
sophisticated user interface,  and specialised 
computations for the data acquired, but at the end a team 
of 5 persons was able to deal with all needs, and the 
software was considered the best package in that 
particular market segment. 

Because the StateWORKS tools impose a certain 
structure on the software, it has sometimes been possible 
to successfully and rapidly complete a project which had 
been though to be impossible, on account of its apparent 
complexity. If a complex project is hard to comprehend, 
then coding in the classical way, with any available 
language, will not make it easier to understand, and 
failure can result. 

At the time of writing, StateWORKS is being 
introduced into two major multi-national companies.  A 
list of past projects may be seen at the StateWORKS web 
site [13].  

Because the StateWORKS concepts are very simple 
and basic, the programmer need not invest too much time 
in learning them, and can start applying them very 
quickly. This contrasts with some more complex tools, 



 

which require a major investment to master, and then 
produce results which are not always felt to justify that 
effort. 

5. Further Work. 
 
The already very extensive StateWORKS Class 

Library, which is the foundation for the RTDB, has new 
functions added from time to time, and this process will 
continue. 

 A certain number of improvements are being made to 
the Editor and other aspects of the I.D.E. 

Work is already quite advanced on defining a 
standard implementation-independent XML data type 
description, which will simplify the passing of FSM 
specifications between various tools, including UML, and 
we are looking for a way to start discussions of this topic. 

6.  Conclusions 
 
The concepts presented in this paper have resulted in 

a new modelling and implementation paradigm for 
control systems. Although the designs use a conventional 
system behavior description in the form of state 
machines, the implementations are very different in 
comparison with typical control software. The software 
control flow is not programmed any more, but it is 
implemented by a universal execution unit that executes 
the control specification in the form of binary or text 
files. The specification model is prepared and tested by 
means of development tools including editors, validators, 
simulators and monitors [13]. 

StateWORKS offers a very high degree of software 
re-use, and of avoidance of coding. This can yield great 
increases in productivity, which we shall need if great 
advances  in  the complexity of  the  hardware  we can 
now  build at low cost (cf. Moores Law for IC density) 
are to be fully utilised.  Companies offering a range of 
similar products may re-use many of their FSM designs 
with confidence, and can adapt existing designs to new 
target hardware without the need to analyse complex 
code written for the previous generation. 

Why is it so effective? The main reason is surely that 
the software is constructed in simple units, and the FSM 
model we employ forces each FSM in particular to 
conform strictly to the definition of its interfaces. Similar 
concepts have been used for many years in other 
branches of engineering. 

A major problem encountered in most initiatives to 
reduce or automate coding is the diversity of input/output 
signals in embedded systems: these normally require 
laborious programming. The StateWORKS concepts of 
the "virtual environment" and of "positive-logic algebra" 
permit the software behaviour to be fully and rigorously 

specified while isolating the input/output particularities 
from that specification, thus reducing the perceived 
complexity of the software. 

Though the technical concept has been tested and 
proven in many applications the introduction of these 
new development and execution tools has not been an 
easy matter. The main problem for programmers seems to 
be the acceptance of tools that are not freely programmed 
and which limit their task to the preparation of a formal 
specification. A true software engineer should be glad to 
avoid the coding of the control flow [14]. 

7.  Acknowledgements 
 

The idea was born many years ago. To prove its 
usefulness and to reach a stage of working development 
and execution tools required the involvement of many 
others. R. Schmuki has had the most influence on the 
proper definitions of object properties. Due to his support 
and work we have now working tools. A. Flora-
Holmquist, J. Dobrowolski, D.Smith and N. Chaffee were 
the driving persons at AT&T and made the introduction 
of the concepts into the telecommunication sphere a 
success. To them, as well as many other persons who 
helped us during innumerable discussions, we should like 
to express our acknowledgments. We are also indebted to 
the anonymous reviewers for their helpful suggestions 
and comments. 

8. References 
 
[1]  Edward A. Lee: "Embedded Software - An Agenda for 
Research", UCB ERL Memorandum M99/63 (December 1999). 
(Available on-line at eecs.berkeley.edu/publications.) 
 
[2] Aki Nimura: "SCC-II Microsequencer", Xilinx "XCELL 
Journal" issue 42, Spring 2002, page 72. (Available on-line at 
www.xilinx.com/literature.) 
 
[3] David Harel: "Executable Object Modeling with 
Statecharts", IEEE "Computer" July 1997, pp. 31-42. 
 
[4] Miro Samek, "Practical Statecharts in C/C++" CMP 
Books, 2002. 
 
[5] J. Caroll, D. Long, Theory of Finite Automata with an 
Introduction to Formal Languages. Prentice Hall, Englewoods 
Cliffs, N.J., 1989. 
 
[6] Stephen J. Mellor and Marc J. Balcer, Executable UML. 
Addison-Wesley, 2002.  
 
[7] Shige Wang and Kang G. Shin: "An Architecture for 
Embedded Software Integration Using Reusable Components", 
Proc. International Conference on Compilers, Architectures 
and Synthesis for Embedded Systems, ACM, November 2000. 



 

[8] Robert C. Martin, Agile Software Development. Prentice-
Hall, 2002. 
 
[9] F. Wagner, "VFSM Executable Specification" Proceedings 
of the International  Conference on   Computer System and 
Software Engineering. The Hague, Netherlands, 1992, pp.226-
231. 
 
[10] F. Wagner, The Virtual Finite State Machine: Executable 
Control Flow Specification. Rosa Fischer-Löw Verlag, Gießen, 
1994. 
 
 [11] A. R. Flora-Holmquist, J.D. O’Grady, M.G. Staskauskas, 
"Telecommunications Software Design Using Virtual Finite-
State Machines“, Proceedings of the International Switching 
Symposium (ISS ‚95). Berlin, Germany, 1995, pp. 103-107. 
 

 [12] A. R. Flora-Holmquist, E. Morton, J.D. O’Grady, M.G. 
Staskauskas, "The Virtual Finite-State Machine Design and 
Implementation Paradigm“. Bell Labs Technical Journal. 
Winter 1997, pp. 96-113. (Available on-line at 
www.lucent.com/minds/  - search for VFSM). 
 
[13] For further information and references, see 
http://www.stateworks.com. 
 
[14] Terri Maginnis, "Engineers Don't Build," IEEE Software, 
Jan.-Feb.2000, pp.34-39. 
 
 
 

   Appendix A:  Finite State Machines    (FSM). 
 
A finite state machine, sometimes called a finite 

automaton, is a system whose condition depends not just 
on external stimuli, but on the history of those stimuli. 

A very simple example is a keyboard, which might be 
in the normal, initial state, or the caps-lock state, 
depending on the number of times the Caps Lock key has 
been pressed.  Although programmers are often 
introduced to FSMs in the context of parsing input text 
for compilers, the concept is very much more general, 
and applies to most "reactive systems" in which internal 
processes are governed or influenced by external events. 
In such systems the FSM does not merely run through a 
sequence, producing an end result, but it normally 
operates throughout the period when the system is able to 
function. 

The academic definition of an FSM is a "quintuple" A 
= <Σ, S, S0, δ, F> where Σ is an alphabet, S is a finite, 
non-empty set of states, S0 is a set of initial states, 

 δ:S x Σ→ρ(s) is a transition function, and F is the set 
of accepting states (perhaps empty). This is perhaps not 
too helpful to the practitioner, but quite an amount of 
theory can be found in the various text-books if he is 
mathematically inclined. A key point is, however, the 
input alphabet Σ, which defines the stimuli to which the 
FSM will react, and this is discussed in some detail in the 
body of the paper. 

A weak point of the above definition is the absence of 
actions. One might think that the task of the state 
machine is to change states until it reaches an end state 
Fn,   and   there   is   a  class   of   state   machines   called  
"deterministic"  which  need  to  do  this.    (For  example, 

  
parsing text and reporting when specific sequences are 
detected.) The true task of the generalised state machine 
is to trigger actions according to situations defined by the 
present state and stimuli. 

FSMs are normally described in a diagrammatic form, 
using a circle to represent each state, and lines with arrow 
heads to represent transitions between the various states.  
The addition of detail explaining what will provoke any 
transition is often difficult to achieve, and a text 
description of the FSM is then needed. 

As the FSM functions, changing state from time to 
time, it will provoke actions in other parts of the system, 
as required for the specific project. 

An FSM will often seem to be very easy to design, 
and will require a modest number of states - say about a 
dozen - to perform its task. Then, when the designer 
considers what might go wrong in various ways with the 
external system, he is forced to add many states to handle 
these errors, and the whole FSM becomes very hard to 
understand or deal with. This is referred to as "state 
explosion"1 and there is a solution: split the FSM into 
several different FSMs which are linked together, and 
where each one deals with a part of the problem.  In very 
large systems, one will find that many of the error-
handling processes are almost identical, and this can save 
time in the development phase by permitting re-use of 
some FSM designs. 

Although the essential concepts of the FSM are quite 
easy to learn, their use to design complex systems will 
necessarily require some experience, and even talent, if 
effective and elegant solutions are to be created. 

                                                 
1 The term "state explosion" is also used in validation techniques of 
protocols, effectively state machines ( see for instance Design and 
Validation of Computer Protocols by Gerald J. Holzmann) but it has 
there a different meaning. 


