CompEuro 1992 Proceedings

Computer Systems
and

Software Engineering

May 4-8, 1992 The Netherlands

Sponsored by

IEEE Computer Society
IEEE Region 8
IEEE Benelux Section

© Copyright IEEE 1992. Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE

|IEEE Computer Society Press
Los Alamitos, California

Washington e Brussels e Tokyo

Peter
© Copyright IEEE 1992. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

VFSM Executable Specification

F. Wagner

BALZERS AG

Abstract

The paper presents a software design method based on a
virtual finite state machine (VFSM) concept. The concept
defines a virtual environment that allows the finite state
machine to be an entirely table driven software module. A
hybrid finite state model is used to achieve a superior
design clarity. The presented method separates the control
part of the design problem from the data manipulation
part. The specification of the control part is directly
executable. The control part is not coded; it is expressed in
a table that is executed by the virtual finite state machine
executor.

1 Virtual Environment

1.1 Software design

In the very beginning of any project there are require-
ments. They are general, expressed in an implementation
independent way. A software project starts with a specifi-
cation [1] [5] [11] that should describe the requirements
in a formal but still implementation independent form.

The implementation that consists of a design and coding . .

should be an exact translation of the specification into
programming language instructions. The code includes
implementation specific aspects dictated by the language
and operating system.

If the transition from a specification to a design and
later code is done by hand, or more precisely speaking,
by the mind of a programmer, some deviations from the
specification are unavoidable. Changes in the require-
ments intraduced when the project is well advanced tend
to bypass the specification and design, and are done
directly in the code.

During development the role of specification and
design documents decreases. At the end of a software
project the only reliable source of information "what the
software does" is the code itself.

0-8186-2760-3/92 $03.00 © 1992 IEEE

226

This typical software development scenario repeats
project after project. Different administrative means try
to improve the situation but they fail for several reasons:
- in the end only the code really counts as it is the end
product,
- any document made by hand that is not processed by
programs that verify its correctness (compile, assem-
ble, test) is not reliable.

1.2 Introducing the idea

Let us specify a simple task of controlling an air
conditioner in an apartment:

The air conditioner should be switched on if the
temperature is too high (above 80 degrees) and all
windows are closed. It should be switched off if the
temperature is low enough (drops below 75 de-
grees) or any window stays open too long (1 mi-
nute).

temp_toa_high & windows_closed

RN
. o
I N
temp_low v
windows_opened & timeout
Figure 1 State transition diagram for an air condi-

tioner control

The state specification table shown in Figure 1 pre-
sents the concept of the air conditioner control using a
finite state machine with two states: off and on. The air
conditioner control is fully specified in a specification
table (Table I).

Entering state off the finite state machine switches
the air conditioner off: (E: air_cond_off). If the
temperature is too high (temp too_high) and all

Table | Specification table for an air conditioner control

off E: air cond off

(state) (entry action)

on temp too high & windows closed

(next state) (transition condition) - :
W

on E: air cond on

{state) (entry action)

X: stop timer

(exit action)’

windows closed stop timer
(input action condition) (input action)
~ windows_open ' start_timer
(‘~put action condition) (input action)
off temp low v
(next state) windows_open & timeout
(transition condition) o
|
windows are closed (windows_closed) the finite state details of the air conditioner or timer control. On the
machine changes state to on. Entering state on the other hand it includes all details of the control require-
finite state machine switches the air conditioner on: ments - how the air conditioner should be switched on
(E: air_cond on). If the temperature drops low and off by changing temperature and opening windows.
enough (temp_low) the finite state machine changes This specification describes the control of an air
its state to off. Opening any window starts a timer conditioner using only names and two logical operators:
(start_timer). If the timer elapses (timeout) and the =~ AND (&) and OR (v). The specification is abstract
window is still open (windows_open) the finite state enough to remain stable for a long time. It could be -
machine changes its state to off. Leaving the state used for many types of input temperature sensors,
on the finite state machine stops the timer window position sensors, any number of windows, air
(X: stop_timer). conditioner types and timers. It has been achieved by

avoiding implementation details.
The specification is abstract - it uses names that
describe the essence of control requirements. A change 1.3 Names as virtual signals
in these names or conditions are highly improbable. If

they happen they would mean a major revision of the A virtual environment is created by inventing names of
requirements. The details of the requirements that are signal values. The names must cover all data relevant for
more likely to be changed (the actual temperature values the problem to be solved. The names are the only
or number of windows) are not present in the specifica- information that can be used by specifying the problem.

tion. Similarly, this specification does not address the

| VIRTUAL

| ENVIRONMENT
| l
virtual virtual

real Input input nalmes | gpecification | OUTPUT names | oyt real
inputs Preprocessor | Executor | Postprocessor outputs

! \ !

[|

| Specification |

|

Figure 2 A control system with a specification executor

The true nature of the real signals does not matter - they
can be numbers, boolean values, analog values, attributes,
parameters, descriptive names of situations, complex
conditions, etc. Irrespective of their origin, names are
equal in the virtual environment. They express some
value or feature of signals. They describe some more
complex input/output dependencies. They define some
combined features of many signals.

2 Virtual Finite State Machine

2.1 VFSM Control System

Let us now imagine an implementation system presen-
ted in Figure 2. It comprises a standard engine Specifica-
tion Execator that is able to execute abstract specifica-
tions similar to that shown in Table I. Real inputs are
preprocessed to a form required by the Specification
Executor. Qutputs produced by the Specification Execu-
tor must be transformed by an Qutput Postprocessor to
a form suitable for controlling outside actuators. The
Specification Executor as well as the Specification are in
a Virtual Environment.

Thus, the concept of control software presented in this
paper leads to partitioning of the problem into well
defined pieces:

- input preprocessing procedures that map the real

inputs or input conditions into uniform virtual input

names,

- output postprocessing procedures that trigger actions

defined by virtual output names produced by the

Specification Executor,

- the specification of the control problem.

The Specification covers the control flow of the
designed system. It includes the entire knowledge about

228

the behavior of the system, but it is kept on an abstract
level to assure that it is fairly readable as it does not
include any implementation specific details. Moreover,
the specification is not susceptible to input/output
implementation changes as it is implementation indepen-
dent and therefore portable.

The Specification Executor is a constant engine
written only once and used for all control specification in
the system (finite state machines).

2.2 Boolean expression as table of sets

A virtual finite state machine is an entirely table
based program. There are two barriers that limit the use
of tables in software design. First, the use of tables
requires uniform inputs. Second, the tables grow expo-
nentially with increasing number of inputs. The concept
of a virtual environment [9] [10] solves the problem
allowing tables to be used on a much larger scale. The
virtual environment allows logical conditions to be
expressed as a table of sets. It seems that for any practi-
cal purpose, size of a table of sets does not exceed
acceptable values, and they can be used to implement
finite state machines.

Let us assume that:

- input variables of a logical function are set elements;

- a set of some input variables represents an AND

operation on these variables;

- a table of sets (of input variables) represents an OR

operation on these variables.

A more detailed description of the table of sets method
can be found in [9]. For the purpose of this paper this
definition will be supported by an example. A logical
function in a table of sets form:

) {temp_low}
aircond_on - . .
{windows_open, timeout)}

expresses the logical function (taken from the Table 1):

aircond_on - temp_low V
windows_open A timeout

The value of a logical function in the table of sets form
is calculated by checking whether the sets in the table are
a subset of the actual input variable set. If at least one of
the sets in the table is a subset of the actual input
variable set the logical function is TRUE, otherwise it is
FALSE.

In the above example aircond_on is TRUE if cither the
name temp low or both names: windows open and
fimeout are in the input variable set. 5

2.3 VFSM execution model

Combining the features of Mealy and Moore automata
[2)[6]17][8] leads to combined models. There are several
combined models imaginable. The model used for the
virtual finite state machine has evolved from practical
experiments and experiences rather than from any deeper
theoretical analysis. This model is not dictated by the
concept of a virtual environment; any other model will
do. Anyway, this model will be further named as a virtual
finite state machine (VFSM) model.

Virtual Inputs

S B

Wait
! for Input
|

i

Yes Execute

T No_Tpur Actions
™ mput Actions |
e

i Possible ? _1

\/

| /r
\ T n

S~ Yes -
‘7—-__&/ praﬂe&lOf; s Execute
0SS ? - Exit Actions
[- T ‘ !
! Execute I
P ~a——- (Charge State
| Entry Actions | i
i ! H

Figure 3 VFSM execution model

i

A VFSM model uses three types of actions: entry, exit
and input actions. The entry and exit actions represent
the Moore nature of the model - they are state depen-
dent. The input action represent the Mealy feature of the
model - it is a function of a state and inputs.

The VFSM model is described by a flowchart shown in
Figure 3. The important issue is that a transition function
is rather a boolean condition and not just a single event.
Keeping this in mind, three possible scenarios may
happen with none (A), single (B), and multiple (C) state
changes.

In case A, the input change causes only an input action
and the VFSM returas to the waiting point - there are no
conditions to change the state.

In case B, the input change triggers a state change.
First, an input action is performed. Since the transition
conditions are fulfilled an exit action is carried out, the
state is changed, an entry action in the new state is
performed, and the VFSM returns to the waiting point.

In case (C), the input change triggers a serious of
input changes. The beginning is exactly as in case (B): an
entry action, an exit action, state change and entry action.
Since in the new state the transition function is also
fulfilled the VFSM continues the loop: exit action, state
change, entry action. The loop terminates when the
VFSM enters a state in which there no more condition to
change the state, and the VFSM returns to the waiting
point.

The basic design philosophy of the VFSM is described
by a definition of its actions:

a). Entering a state, the YFSM does an
entry action and waits for a reaction of
the controlled system. Normally, the
reaction should lead to a state change.

Inputs which do not cause state change
should trigger input action.

An exit action performed by leaving a
state should have auxiliary character; it
must not influence other states.

b).

2.4 Table driven VFSM implementation

The algorithm presented by the flowchart in Figure 3

-defines the behavior -of the VFSM modelk The flowchart

defines the VFSM Specification Executor. The specifica-
tion is represented as tables of sets and the Executor
operators: transition, do_input_action, do_entry_action,
do_exit_action use set operations to evaiuate the speciﬁ-
cation control logic and output functions.

Figure 4 presents graphically a specification of one
state. Three data types are used to describe the states:
- a number state that specifies the next state;
- a set of input names VINPUT,;

state | | VINPUT | | VNPUT | VINPUT

vanstion 4[58 | [VRRUT | [vheuT | et
[sate | [vneut | [vaeur | [vneu |
et [voutruT | [vouTteur |

[wneut | [vnear 1 [vineot | [vouteur |

oot) (vt | [vneut | [vinpuT] [VOUTRUT |
actions
TveoT | (vt | vt] [vouTeuT |
A

o)

ransition m 1 3,4 |

o][|

s B 2]

Figure 4 Table of sets representation of VFSM transi-
tion table (a) general, (b} state on in Table |

- a set of output names VOUTPUT.

For instance, to find out whether a transition is due
the Executor checks whether any of the transition
VINPUT sets are subsets of virtual input names variable.
Similarly, this set operation is used to find out which of
the input actions should be carried out.

3 Software Specification and Development
System

3.1 Specification forms

Several FSM specification forms arc known. At
present, a VFSM is specified using a specification table
in a form presented in example in Table I. The table
comprises full VFSM specification, i.¢. transitions and all
actions: entry, exit and input.

A specification of a VFSM begins with definition of
input, output, and state names. The names are defined as

-——emumerations. These are the-only names-which-can be
used in the specification table.

3.2 Translation

The translation process is presented in Figure 5. The
process has two phases. First, the specification table is
tested for correctness (names and operators) and if it is
correct a VFSM string representation xoc.va is pro-
duced. In addition, a header file is generated which
comprises all table sizes as a C constants. The translation
program generates also several auxiliary files like: list of
names and a source program for drawing a directed
graph using DAG tool. The first phase translation
programs are written in AWK,

Create Create Translation [000N
List Names Binary Table Programs :__, SOCKOUt

)

I
1
1
[
: mna ttc.c L XOOXSEA
i
1
|
]

- va
XXXX VT Translate OOKNVE Create Assemble | o

——={ Tabe = Binary Tavle Compilable File {———a= XXX C
ftsa ttcout tca ! XXX

Figure 5 VFSM transiation tool

230

The second translation phase 1s accomplished by AWK
and C programs which gencrate a compilable C specifica-
tion file XXXX.C. This C specification file consists of a
spec variable and access functions. The spec variable is
the binary specification table, and it is initialized to
values defined by the VFSM string representation. The
access functions are used by the VFSM executor to read
data from the spec variable.

The spec variable has a header which comprises
pointers ta access function. The VFSM executor is called
with a pointer to the spec variable header which enables
it to access the specification data. In such a way, the
VFSM executor is completely separated from the specifi-
cation. Hence, onec YFSM executor serves any number of
VEFSMs.

4 Implementations

The concept of a virtual environment has been utilized
~Tor the design of complex software control systems. The
most complicated system has 2000 inputs and outputs and
consists of 400 interconnected virtual finite state ma-
chines. The size of each machine varies from 20 to 60
states.

Experiences with process control and telecommunica-
tion software have shown that the specified finite state
machines have the immense merit of remaining compre-
hensible to the designers who originally specified the
system behavior. It is possible to maintain such software
with far less effort and worry than is the case with
conventional software.

Acknowledgments

The virtual environment concept and the VFSM
Technology have evolved over many years. Without
innumerable discussions with my friends in Europe and

JSA T would not have been able to reach the point of
" the working paradigm and design system. [would like to

express my gratitude to engineers in BALZERS AG
where the idea was conceived and at&T where [was able
to find it workable in a totally different environment.
Especially, I would like to mention the encouraging and
fruitful discussions with R. Schmuki and A. Flora-
Holmquist.

References

|1} T. De Marco, Structured Analysis and System Specifi-
cation. Prentice-Hall, 1978.

[2] A. Gill, Introduction to the Theory of Finite State
Machines. McGraw-Hill, 1962.

3] W. Grass, Steuerwerke. Entwurf von Schaltwerken
mit Festwertspeichern, Springer Verlag, 1978.

|4] D. Harel, "Statecharts. A Visual Formalism for
Complex Systems’, Science of Computer Pro-
gramming, No.8, 1987, pp. 231-274, Elsevier
Science Publishers B.V. (North-Holland).

[5] DJ. Hatley, L.A. Pirbhai, Strategies for Real-Time
System Specification. Dorsét House Pubiishing,
1988.

[6] F.C. Hennie, Finite-State Models for Logical Ma-
chines. John Wiley & Sons, Inc., 1968.

[7] J.E. Hopcroft, J.D. Ullman, Introduction to Automata
Theory, Languages, and Computation. Addison-
Wesley, 1979.

[8] Z. Kohavi, Switching and Finite Automata Theory.
McGraw-Hill, 1978.

[9] F. Wagner, A Virtual Environment for Table Based
Control Software. Report prepared for AT&T,
1990.

{10] F. Wagner, Method of and Apparatus for Construct-
ing a Control System and Control System Creat-
ed Thereby (patent pending), 1991.

{11} E. Yourdon, L.C. Larry, Structured Design: Funda-
mentals of a Discipline of Computer Program
and System Design. Prentice-Hall, 1975.

