O A R R T

United States Patent [
Wagner

US005463543A
111 Patent Number: 5,463,543
(451 Date of Patent: Oct. 31, 1995

[54] CONTROL SYSTEM INCORPORATING A
FINITE STATE MACHINE WITH AN
APPLICATION SPECIFIC LOGIC TABLE

- AND APPLICATION INDEPENDENT CODE
[75] Inventor: Ferdinand H. Wagner, Wheaton, Ill.

[73] Assignee: Janusz A. Dobrowolski, Wheaton, I11.;
a part interest

[21] Appl. No.: 219,194
[22] Filed: Mar. 28, 1994
Related U.S. Application Data

[63] Continuation of Ser. No. 693,936, Apr. 29, 1991, Pat. No.

5,301,100.
[51] Int. CLO oeeeeereeereereene s eneseeans G05B 11/01
[52] U.S. ClL ... 364/141; 364/148; 364/DIG. 2;
364/977.5
[58] Field of Search ..., 364/140-142,

364/147, 148, 194, 949-949.2, 926.9-926.93,
971.5; 395/800

[56] References Cited

U.S. PATENT DOCUMENTS

4,241,401 12/1980 De Ward et al. .
4,241,402 12/1980 Mayper, Jr. et al. .

4.608,628 8/1986 Saito et al. ..cevvveereceerremrnncrnnnnens 364/141
4,628,435 12/1986 Tashiro et al. oueeeeveerieirnrennecnans 364/130
4,675,556 6/1987 Bazes .

4,700,326 10/1987 FlOTNE ..cueceveireirereeniiieriressonaeens 364/140

4,734,856 3/1988 Davis .
4,747,127 5/1988 Hansen et al. .
4,796,179 1/1989 Lehman et al. .
4,802,162 1/1989 Kakuda et al. .
4,803,636 2/1989 Nishiyama et al. .
4,805,099 2/1989 Huber .

| CONTROLLED .:106

4,819,161 4/1989 Konno et al. .
4,829,575 5/1989 Lloyd .
4 843,545 6/1989 Kikuchi .

4,845,627 7/1989 Nadolski et al.cccauuur.ee. 364/147

4,858,102 8/1989 Lovrenicheccvcorrereenrnrenerene 364/136

5,125,008 6/1992 BUITOWS .ccoreernemecrrerrecseesmseneane 395/800
OTHER PUBLICATIONS

Koban, “Switching and HFnite Automata Theory,”
McGraw-Hill, 1978 pp. 246-247.

Jacob Millman, PhD. and Christos Halkias, PhD., “Inte-
orated Electronics: Analog and Digital Circuits and Sys-
tems,” McGraw-Hill, 1972 pp. 614-617.

Alan M. Davis, “A Comparison of Techniques for the
Specification and External System Behavior,” Computing
Practices, Sep. 1988, vol. 31, No. 9.

Hatley, D. J., Pibhai I. A., “Strategies for Real-Time System
Specification,” Dorset House Publishing, New York, 1988
pp. 74-75.

Clare, C. R., “Designing Logic System Using State
Machine,” McGraw-Hill, 1973 p. 20.

Primary Examiner—Roy N. Envall, Jr.

Assistant Examiner—Steven R. Garland

Attorney, Agent, or Firm—Dressler, Goldsmith, Shore &
Milnamow, Ltd.

[57] ABSTRACT

A control system includes preprocessing circuitry which
converts sensed input signals to a plurality of names. A
processing unit which is controlled by a fixed, prestored,
program combines the input names with prestored control
words from an application logic table to produce output
names which are indicative of a control action for the
purpose of controlling the process. Postprocessing circuitry
converts the output names to signals for controlling the
process.

25 Claims, 11 Drawing Sheets

PROCESS or —_—
APPARATUS
/101
COMPUTING 102
SYSTEM ESMee
I MICROCODE
STORAGE
INPUT

AEGISTER

107 l 109
INPUT PRE- LOGIGAL OUTPUT
PROCESSOR PROCESSING DRIVERS
UNIT

114 HEGISTEH 108

116

11
STATE REGISTER %8
1 113 PARAMETER
APPLICATION §~103 116
LOGIC -
24 TABLE

TRANSITION TAE DISK 105
e e I s

PARAHEI'EFI ~ 308

DEVELOPHEHT SYSTEM

104

224 /

/ TRANSITION TABLE

PARAMETER

115
-} TERMINAL

5,463,543

TVNINGIL | |

Sl

H31l3INVHVYd
318V.1 NOLLISNVHL /

$0L” | WILSAS INIWNDOIIAIA / bec
T

9Ll

1 .
a AOVHOLS l mmmz\éﬁ_
M GOl MSIQ V.1 NOILISNVHL w.__wm..r_ e
= NOILYOITddY
m HILINVHVA
80¢E / H31SiD3H 31VIS
. LINN
R SH3IAING HOSSIOOHd ONISS300Hd HOSSIOOHd
— 1Nd1no -1S0d 1Nd1NO .Ew wm“ -34d LNdNI
1-:..
™ 201 OLL 601
o | H31SID3Y Pl H31SID3H
o LNdiNo _ 1NdNI
J9VHOIS
3Q0J0HIIN
ONSH WILSAS
201 ONILNINOD

LOL

SN1ivdvddv
10 §S300Hd
301 G3aTIO4dLNQOD

U.S. Patent

101

SHOSNIS
1NdNI

} "OId

U.S. Patent Oct. 31, 1995 Sheet 2 of 11 5,463,543

FIG. 2A

DOOR_CLOSED
DOOR_CLOSED DOOR_CLOSED

DOOR_CLOSED
C DOOR_OPEN
202 3
203
MOTOR_OK MOTOR_OK
MOTOR_NOT_OK
/204
DOOR CLOSED MOTOR_OK OUTPUT NAMES
0 0 DOOR_CLOSED, MOTOR_NOT_OK
0 1 DOOR_CLOSED, MOTOR_OK
1 1 DOOR_OPEN, MOTOR_OK
1 0 DOOR_OPEN, MOTOR_NOT_OK
FIG. 2B
2. TEMP_HIGH
TEMPERATURE TEMP_IN -
0-10V - TEMP_LOW

TEMP_OUT

LIM_H LIM_|

PARAMETERS <

224
TEMPERATURE ’/ 225
LOW IN HIGH OUTPUT NAMES
O 0 O NO INFO AVAILABLE
1 0 O TEMP_LOW, TEMP_OUT
0 1 1) TEMP_IN
0 0 1 TEMP_HIGH, TEMP_OUT

OTHERS PREPROCESSOR FAILURE

U.S. Patent Oct. 31, 1995 Sheet 3 of 11 5,463,543

FIG. 2C ' 241
NULL
EVEN
MICROPROCESSOR cows Do

”
242~ (0..9)

OO ~onh BN a0
OO0 O OO0 OO0 O =
O -2 O -4 O 4 0 40 0

FIG. 3A

CMD_ON

302

CLEAR

CMD_OFF

FIG. 3B

ET

S
sus<STE
| RA

-
MP

308~ PARAMETERS

U.S. Patent Oct. 31, 1995 Sheet 4 of 11 5,463,543
FIG. 4 CONDITIONS AS STORED IN
APPLICATION LOGIC TABLE

INPUT FROM /
INPUT REGISTER ’

WAT_ENA
WAT_LOW

s
1L
Y A

DOOR_OPEN 1. , -
DOOR_CLOSED |1 . ' 1
TEMP_HIGH = Lo I-l
MOTOR_OK \’
(IMEGUT — . — IMPLIED OR
CMD_OFF] |

1 |

1 .

%
IMPLIED AND |

o

5,463,543

318V.
INO0T

NOLLYOIlddY

EiLi

d431S1934 J1VI1S

2Ll
LLL

Sheet 5 of 11

LINN

HOSS3OO0HJ1SOd _ ONISS300Hd HOSS300Hd3Hd
S 1Nd1NO OL QHOM 1NdLNO N e, | GHOM LndNi " 1NdNI WOHA
o o
m H31SID3Y pil H31SIO3H
S 1Nd1NO 1NdNI

AN

U.S. Patent

U.S. Patent Oct. 31, 1995 Sheet 6 of 11 5,463,543

FIG. 6

COPY 622
TRANSITION TABLE .

SET
INITIAL STATE
628 -
' 825
CHANGE STATE DO ENTRY ACTION

637 ~—<

DO EXIT ACTION TeST
_ TRANSITION CONDITION
827 826
Y
831 / H

\ — 632
M 833
v 54 35

READ
INPUT NAMES
836
DO INPUT ACTION

U.S. Patent Oct. 31, 1995

FIG. 7

INPUT SIGNAL

TIMER
TIMER ELAPSED

701 BOOLEAN
DOOR_CLOSED = FALSE
DOOR_CLOSED = TRUE
WATER_LOW = FALSE
WATER_LOW = TRUE

DIGIT = 1..9
COUNTER
N COUNT -1
COUNT = 2... MAX-1
COUNT = MAX
708~ DISCRIMINATOR SIGNAL
DISCR = 0 (HIGH)
DISCR = 1 (IN)
DISCR = 2 (LOW)
COMMAND
CMD =1
CMD =5
CMD =6
200 PARAMETER

\ WATER_CONTROL = FALSE
WATER_CONTROL = FALSE

Sheet 7 of 11

5,463,543

INPUT NAME

TIMEOUT

DOOR_CLOSED
DOOR_OPEN
WAT_HIGH
WAT_LOW

FIRST
- (NOT USED) — 705

LAST
/ 107

TEMP_HIGH, TEMP_OUT
TEMP_IN
TEMP_LOW, TEMP_OUT

~—_
CMD_OFF 708
CMD_ON

CMD_IDLE

WAT_DIS
WAT_ENA

5,463,543

18—t _ 340 HOlon
NIdO HOOQ WHVTV
— NOLLOV LNdNI
= HOIH dW3L WHYTV
* 18~ NOLLOV LNdNI
=P
= MO LON HOLOW WHVV VN3 LVM ONV MOT LYM
v He— NOLLOV LNANI HO LNOINLL
eog .~ H3NL “dOLS 108 —p. YNI LVM GNY MOT LVM ONV N3dO HOOQ | 908+
NOLLOV LIX3 HO HOIH dW3L ONV N3dO HOOQ | HOHHI 3LVIS
S 1NO3aNLL | o8
= MWL LHVLS HO YNI—LVM ONV MOT LVM ONV HOIH dWal / | e
Z 008 —mm S LOLON HO YO HOLON ONY G3S010 HOOa 316731VLS
w. NOILOV AHLN3 €08 —— 440 GND |208~ 44O 31VIS | NOT3LVIS
31V1S DGEN 31VLS

NOLLD NOILIONOD

v8 Old

U.S. Patent

U.S. Patent Oct. 31, 1995 Sheet 9 of 11 5,463,543

APPLICATION LOGIC TABLE
FIG. 8B ' 103

DOOR_OPEN
DOOR_CLOSED
TEMP_HIGH
MOTOR_OK

TIMEOUT
CMD_OFF

WAT_ENA
WAT_LOW

OUTPUT REGISTER

MOTOR_OFF

MOTOR ON

START _TIMER
STOP_TIMER
ALARM_MOTOR_NOT_OK

ALARM_TEMP_HIGH
ALARM_DOOF_OPEN

112
813 815

5,463,543

Sheet 10 of 11

Oct. 31, 1995

U.S. Patent

FIG. 9A

=
O
x

2 3 4 5 6 7 8 9 10

1

0

B
A

O 0 0 0 0 0 0 0 O O0 O
©c 0 0 0 0 0 0 0O O 0 O
o 0 0 0 0 0 0 0 O O O

1

2

O 0 0 0 O
O 0 0 0 O
O 0 0 0 O
O 0 0 0 O
0O 0 0 0 O
©c 0 0 0 O
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2

1
1
1
1

1

1
1

1
1

1

1
1
1
1

1
1

10

11

1
1
1
1

1

12
13
14
16
16
17
18

19

1
1

2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2

1 1

1 1
O 0 0 0 0 6 0 0 O0 O O
¢ 0 0 0 0 0 0 0 0 0 O

O 0 0 0 0 0 0 0 0 O O

20

Y

5,463,543

Sheet 11 of 11

Oct. 31, 1995

U.S. Patent

378V.1 JID0TNOLLVOINddY

HOSS300Hd3Hd L1NdNI

g6 "Old

5,463,543

1

CONTROL SYSTEM INCORPORATING A
FINITE STATE MACHINE WITH AN
APPLICATION SPECIFIC LOGIC TABLE
AND APPLICATION INDEPENDENT CODE

This application is a continuation of application Ser. No.
07/693,936, filed Apr. 29, 1991, now U.S. Pat. No. 5,301,
100.

The present invention applies t0 a computer driven
system where the problem of control 1s of significant impor-
tance. It applies especially to real time systems.

BACKGROUND OF THE INVENTION

In this specification reference is made to the following
publications: |

1. Davis A. M.: “A Comparison of Techniques for the
Specification of External System Behavior”. Commu-

~ nications of the ACM, September 1988, vol. 31, No. 9,
pp. 1098-1115.

2. Clare C. R.: Designing Logic Syste
Machine. McGraw-Hill, 1973,

3. Kohavi Z.: Switching and Finite Automata Theory.
McGraw-Hill, 1978.

4, Hatley D. J., Pirbhai I. A.: Strategies for Real-Time
System Specification. Dorset House Publishing, New
York, 1988.

and to:

U.S. Pat. No. 4,796,179: Multirate Real Time Control
System Code Generator, Larry L. Lehman, et al.

The majority of computer control systems require pro-
gramming for each application. The process of program-
ming is error-prone and requires testing of implemented
logic and the correctness of program statements which
express this logic. The pure logic of the application is deeply
buried in the program code. There is no known way to
isolate the logic design from peculiarities of the program-
ming language and its data representation.

An alternative to systems which are programmed are
systems which are specified. The advantages of control
systems which are well specified in comparison to systems
which are programmed are well known and summarized ¢.g.
in reference 1 by Davis. As taught in reference U.S. Pat. No.
4.7796,179 a control system can be built using subroutines
describing standard control blocks. The subroutines are then
linked together 1nto the control system. Another approach is
based on table driven finite state machines which are speci-
fied. This 1s suitable for systems intended for applications
- characterized by a high number of control decisions.

As shown in reference 1 by Davis for the table approach,
boolean tables grow exponentially with the number of input
and states. Because of this well known growth phenomena,
a table driven approach has been limited to rather simple
applications. Typically, only selected subsystems of a com-
plex system are implemented as table driven finite state
machines.

Input signals come to a control system from different
analog and digital sensors. The signals are often of different
natures: some are digital, others are analog. The digital
signals are two-valued (boolean) or multivalued (numbers).
The analog signals in their original form are of no use in a
digital control system. Only some specific values of an
analog signal are relevant for control purposes. A table
driven state machine can process digital information only.
Therefore, the use of table driven systems was limited to
applications where input has a standard boolean form. This

Using State

10

135

20

23

30

35

4()

45

50

35

60

65

2

view 18 presented in reference 2 by Clare. Prior approaches
were always limited by exponential growth of memory size.

SUMMARY OF THE INVENTION

A method of and apparatus for constructing a control
system and a control system created thereby which is based
on a finite state machine with constant code (FSMcc). An
input preprocessor module normalizes i1nput signals as
required by the FSMcc logical processing unit. An output
postprocessor module changes the normalized finite state
machine outputs to real signals required by the controlled
process or apparatus. The input preprocessor allows for a
different finite state machine required for an application to
be executed by the same constant code contained in the
FSMcc microcode storage. An application logic table for the
FSMcc is constructed using a specific organization of data
representing application logic conditions. This organization
allows the entire application logic to be expressed in a table
of a technically feasible size. The size of the FSMcc appli-
cation logic table memory is greatly reduced. The symbolic
application logic table is build in a simplified form using
implied AND and OR logical operators. This symbolic
application table is directly converted into the FSMcc appli-
cation logic table.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, closely related figures have the same
reference numerals but difierent alphabetic suffixes.

FIG. 1 is a block diagram of the control system based on
a finite state machine with constant code (FSMcc).

FIG. 2A to FIG. 2C are schematics showing implemen-
tation examples of the 1nput signal preprocessor.

FIG. 3A and FIG. 3B are schematics showing implemen-
tation examples of the output signal postprocessor.

FIG. 4 shows a graphical presentation of control words
stored in FSMcc’s registers and memory.

FIG. 3 1s a block diagram showing components of FSMcc.

FIG. 6 1s a flowchart showing the execution sequence for
FSMcc.

FIG. 7 1s a table showing examples of names used when
testing the present invention.

FIG. 8A is a table showing an example of the FSMcc
transition table.

FIG. 8B shows the table from FIG. 8B stored in a memory
as described in the present invention.

FIG. 9A shows an example of a table stored in a ROM
memory.

FIG. 9B shows the table from FIG. 9A stored in memory
as described in the present invention.

GENERAL DESCRIPTION OF THE INVENTION

The present invention applies to computer driven systems
which consist of single or multiple finite state machines. The
aim of the invention is to build a control system where the
contro! logic i1s specified in a standard form rather than
programmed i1n any particular language. In the present
invention the entire application logic is stored in a table. The
program executing the table 1s constant. The constant execu-
tion program is stored in a ROM-type memory in order to
assure maximum execution speed.

An important feature of the present invention is that all
input signals are brought to a uniform or normalized repre-
sentation form referred to as “names.” Engineering knowl-

5,463,543

3

edge is required to produce these names. These names are
generated by an input preprocessor in the form reguired by
a Finite State Machine with Constant Code (FSMcc). The
input preprocessor extracts the names from the input signals.
There exists no general solution for construction of the input
preprocessor. The same limitation applies to an output
postprocessor. The output postprocessor produces the real
output signals or performs some actions according to names
generated by the finite state machine.

It is assumed in the technical literature that increasing the
number of input signals will always require significant
increase of memory size. This 1s indeed true for a pure
boolean table representation. The present invention uses
input signals in an affirmative form. This leads in a number
of cases to substantial reduction of memory size.

The technical literature takes it for granted that increasing
the number of boolean operators which are used leads to an
optimized form of logical conditions. This appears to be
obvious. Based on this assumption, the manufacturers of
integrated circuits produce a range of gates which cover all
possible boolean operations: AND, OR, NOR, NAND,
EXCLUSIVE-OR, NOT, AND-OR-INVERT, etc. This eases
the design of circuits by requiring a minimal number of
elements. This assumption is correct for systems not exceed-
ing a certain level of complexity. Suprisingly, the present
invention demonstrates that limiting the number of boolean
operators to two (AND and OR) can be a better approach.
This creates a necessary environment for minimizing the
memory Ssize containing the logic conditions. This very
limited number of boolean operations allows standardization
of input signals in an affirmative form and a specific way of
storing the logical condition in memory. The AND and OR
boolean operators which are used are not explicitly present
in the memory which contains the logic conditions. They are
implied by an assumed form of the stored conditions. These
two features of the present invention lead to a reduction of
the memory requirements for storing logic conditions. Thus,
using the present invention a control system with hundred of
inputs can be implemented as a fully table driven hardware
circuit or software program.

The uniform representation of control information does
not mean that the number of input signals (names) is
minimal. Contrarily, in the case of boolean signals the
normalization process may replace one boolean signal with
two names. The true advantage is gained 1n the representa-
tion of logical conditions. Names allow for a specific rep-
resentation of logical conditions. These conditions are stored
in tables with significantly smaller sizes. The reduction of
table size directly decreases the cost of memory used. In
many cases this reduction of table size 1s so significant that
it makes the implementation of a table based system eco-
nomically feasible.

The size of pure boolean tables as presented in the prior
art references cited above would not allow building a system
as presented in this invention. An important feature of this
invention is that the transition table constructed for the finite
state machine uses a new representation of transition con-
ditions. This new representation of transition condition
allows building transition tables with reasonable sizes.
Therefore, the present invention allows a design of a finite
state machine with constant code (the abbreviation FSMcc 1s
used in this description).

Using the present invention the entire control information
is contained in data tables. Hence, a wide range of control
system modifications is possible without changing the rest of
the system. Only the content of memory storing the appli-

10

15

20

25

30

35

40

45

50

35

60

65

4

cation control information must be modified.

Still another important feature of systems using the
present invention results from the fact that data tables
contain control information in a symbolic form (names). The
control information expressed by input and output names
presents the true application know-how. This information 1s
independent of the language, data base, operating systems,
and input-output interfaces used for implementing the con-
trol system. Thus, this form of the application know-how 1s
highly portable. It makes possible the re-use of developed
subsystems.

If the complexity of the application requires a multiplicity
of finite state machines, each machine (if implemented as
FSMcc) is executed by the same constant program. The
logic specification tables for different FSMcces vary. The
organization of each table representing different FSMccs 1s
the same.

The use of finite state machines was limited to simple
applications with a small number of states and inputs. The
present invention based on FSMcc, may not be a solution for
all control problems. But it decisively expands the complex-
ity of applications which can be implemented as a system
with a constant code. Design of a fully table based system
reduces the debugging effort to testing the application only.
The execution part of such a system i1s designed only once
for the entire class of applications.

DEFINITIONS

Terms used in this application have the following mean-
ings:

A name given to a signal value which 1s
relevant for control purpose.

Output is determined by input.

Qutput cannot be determined by input
itself. State and input determine output.
Represents the past (history) of a
sequential system.

Sequential system which has outputs
deterruned by a state,

Affirmative signal form

Combinational system
Sequential system

State

Moore model

Mealy model Sequential system which has outputs
determined by a state and inputs.
Entry action Output change when entering a state.
Exit action Qutput change when exiting a state.
Input action Output change when input changes.

Finite state machine Sequential system.

Note that the term “finite state machine™ is known and
used in the technical literature. There are two definitions
used. According to the definition used in this description a
finite state machine is another name for a sequential system.
This view is represented in many books as for example 1n
reference 3 by Kohavi. The other definition says that a finite
state machine covers both combinational and sequential
systems; this definitions 1s used for instance 1n reference 2
by Clare and reference 4 by Hatley.

DETAILED DESCRIPTION OF THE
INVENTION "

A control system and the method and apparatus for
constructing the control system according to the invention 1s
generally illustrated in FIG. 1. It 1s based on FSMcc which
is shown in detail in FIG. 5. FSMcc executes a constant code
which is stored for example in microcode storage 102,
suitably ROM-memory for greater execution speed. The
FSMcc execution code is independent from the application

5,463,543

~

details. The behavior of the control system is determined by
the content of a transition table 116 stored in the application
logic table 103, suitably RAM-memory. Transition table 116
may be downloaded from a development system 104. If the
FSMcc uses a system with a disk storage 105, the transition

table 116 can be loaded from the disk storage 105. A

computing system 101 controls the process 106. It receives
inputs from the controlled process or apparatus 106 by
means of input sensors 107. It produces outputs which are
supplied to the process 106 by means of output drivers 108.
Input register 111 stores names produced by input prepro-
cessor 109. Output register 112 stores names produced by

FSMcc.

In one embodiment FSMcc and the disk storage 105 can
be based and served by a commercial operating system or a
dedicated solution. The input preprocessor 109 and the
output postprocessor 110 can be dedicated devices if they
perform specialized tasks. They can be built using standard
features of the computer system. They can be parts of the
same hardware and software as the rest of the FSMcc
system.

The input sensors 107 supply signals to the control
system. These input signals are of different natures and
generally comprise excessive information components. In

addition to the information needed for control purposes, the
signals carry irrelevant information. The task of the input
preprocessor 109 is to extract the true control information
and pass it further to the FSMcc in a normalized form.

Examples of how to extract the control information are
given in FIG. 2A to FIG. 2B.

Fhe FSMcc produces outputs in a normalized form rep-
resenting the action to be performed. These FSMcc outputs
are processed by output postprocessor 110. The output
postprocessor 110 generates signals required by spectfic
drivers, attenuators, relays, motors and other output actua-

tors. Examples of output postprocessor 110 are given in FIG.
3A and FIG. 3B.

Input preprocessor 109 may receive parameters 224 and
output postprocessor 110 may receive parameters 308. The
parameters adapt the preprocessor and postprocessor to a
specific variant of the controlled system 106. The parameters

are loaded either from the development system 104 or from
the disk storage 105.

In the present invention, control information contained in
the real input signals is normalized to a standard form of
names. This form is required for FSMcc. As illustrated the
normalization process is done by input preprocessor 109.
The form of the normalized standard inputs for the FSMcc
should meet the three criteria specified below: First, each
basic unit of information (input) representing control infor-
mation about a real input is only in an affirmative form. Such
a basic unit of information will be further referred to as a
“name”. Second, each name is represented by some basic
data item (e.g. a bit). Third, all names form a uniform list
stored in an input register for processing by FSMcc.

Three tested constructions of the input preprocessor 109
are shown in FIG. 2A to FIG. 2C. FIG. 2A shows the
simplest implementation for normalization of boolean sig-
nals. It uses two invertors 201. The real inputs in FIG. 2A are
boolean signals 202 (DOOR__CLOSED and MOTOR __
OK). In this case, the preprocessor doubles the number of
signals producing separate names 203 for TRUE and FALSE
values of the real input signals 202. Hence, instead of
operating with a signal 202 (DOOR_ CLOSED which could

have TRUE and FALSE values) FSMcc will be supplied by

two names 203 (DOOR__CLOSED and DOOR_ OPEN).

5

10

15

20

23

30

35

40

45

50

33

60

65

6

Only one of these names can be present. If both are absent,
it means that the value of the input signal 202 (DOOR __
CLOSED) is not known. If both are present, it means that the
preprocessor has either a design error or has failed (is
damaged).

The real input signal 202 (MOTOR__OK) 1s replaced by
two names 203 (IMOTOR__OK and MOTOR__NOT__OK).
The table 204 summarizes the possible combinations of
output names 203 in dependence of the boolean values of the
input signals 202. In this example, the preprocessor doubles

the number of input signals replacing two boolean input

signals 202 with four names 203. The actual number of input
names in the input word 203 depends on the application.

Only the names used for representing control information
should be generated.

FIG. 2B shows an implementation of a preprocessor for
an analog signal. The real input 222 is a voltage between
zero and ten volts representing temperature. The preproces-

sor is a voltage discriminator 221 which produces four
names 223 (TEMP__LOW, TEMP_ OK, TEMP__HIGH and
TEMP _OUT). The thresholds levels (LIM__Hand LIM_ L)
can be adjusted as required by process parameters 224. The
process parameters are stored on the disk storage 105 and
loaded from there when necessary. This happens at least
during system initialization. These four names 223 are the
only control information relevant for the purpose of the
controlled application. The table 225 in the FIG. 2B defines
the possible combination of names 223 produced by the
preprocessor. Any other situation is erroneous and would
mean that the preprocessor has failed.

The example in FIG. 2C presents a preprocessor working
with input 242 being a number between zero and nine. The
task of the preprocessor 1s to select for any combination of
the input number 242 required names 243. An example of
the required names 243 (NULL, EVEN, POW2, TIM3,
ANY) is given in the accompanying table 244. In this
particular example, more than one name 243 can be gener-
ated simultaneously. Such a preprocessor 241 with a more
complex task might be implemented using a dedicated
circuit or a miCroprocessor.

Logical conditions which determine transitions and
actions in a finite state machine depend not only on signals
produced by the input sensors 107. They contain terms
which are defined by parameters. The parameters are stored
in memory as on disk storage 105 or are loaded from the
development system 104. Parameters 224 are used to deter-
mine conversion values in the input preprocessor 109 as in
example in FIG. 2B. Parameters 308 are used to define
conversion factors in the output postprocessor 110. An
example will be shown later in the description of FIG. 3B.
Some parameters may also set explicitly names in the input
register 111. In such a case they are directly processed by the
input preprocessor 109 to produce required names. These
parameter-dependent names are seldom changed. Usually,
they stay in the input register 111 as set during a start-up.
Sometimes, they are changed according to an action which
says e.g. “load_new_ parameters”. Names in the input
register which correspond to parameters allow a control
system to be customized. They allow the same transition
table to be used for different variants of the control system.

In general, a system designed according to the present
invention has means (represented in this description by the
input preprocessor 109) to produce names for all informa-
tion essential for the control purpose. The main stream of
information comes from the input sensors. But there are also
other sources of control information, the parameters being

5,463,543

7

an example. All such information must have corresponding
names in the input register 111, because the control is
performed exclusively with these names.

FSMcc produces output signals which are uniform names.
The names at the output describe the values or actions and

must be changed into real values. The real output signals are
produced from names by a circuit or computer based output
postprocessor 110. The output of FSMcc forms a list of
symbols or output names. The task of the postprocessor 1s to
change the names into real signals. FIG. 3A and FIG. 3B
show two examples of implementing such a postprocessor.
In FIG. 3A, a flip-flop 301 is used to change a pair of output
names 302 (CMD __ON and CMD __OFF, where cmd stands
for command) into a boolean signal 303 (MOTOR__ON)
which has two values —TRUE and FALSE (represented by
high and low voltage levels). It 1s assumed that FSMcc
producing the output names will never generate both names
302 (CMD__ON and CMD__OFF) simultaneously. The table
304 summarizes the possible boolean values of the output
303 in dependence of the names 302.

The circuit in FIG. 3B produces an analog output signal
307 as a response to three possible output names 306 (SET,
STEP AND RAMP). The names 306 produced by FSMcc
define only the type of the analog output—set constant
voltage (SET), set voltage for a certain time period (STEP)
or set voltage which rises to a given value in a certain time
period (RAMP). A specialized D-A (digital-to-analog) con-
verter 305 generates the required output signal 307 (OUT).
To produce the required form of the output signal 307 the
D-A converter 305 receives parameters 308 (LEVEL and
TIME). The parameters are stored in memory 105 and
loaded when necessary at least during system initialization.
The table 309 summanizes the possible shapes of the analog
output 307 in dependence of the names 306.

Input preprocessor 109 and output postprocessor 110 do
not always belong to separate physical entities. They can be
physically encapsulated as an input-output module contain-
ing digital input circuits, digital-to-analog convertors, ana-
log-to-digital convertors, digital output circuits, etc.

The input preprocessor 109 and output postprocessor 110
-are used to isolate FSMcc from the real signals. FSMcc
operates in a standard, uniform environment where its input
is an input word. The input word 1s a list of input names.
FSMcc produces an output word which 1s a list of output
names. These names create a virtual environment for
FSMcc. FSMcc 1s a virtual finite state machine. Construc-
tion of the virtual environment achieves a fully table driven
finite state machine with constant code (FSMcc).

The examples of input processor 109 in FIGS. 2A, 2B, 2C
and the examples of output postprocessor 110 1in FIGS. 3A
and 3B demonstrate the true value of using symbolic expres-
sions (names) to specify and impiement the controi problem.
For instance, the mnput names (DOOR__CLOSED and
DOOR_QOPEN) are the only known symbols used to
express the position of a door in all logic conditions in
FSMcc. Assume for some reason that in operation the input
sensor which detects the door position is changed. For
example, the signal polarity will be reversed (TRUE means
door open) or the boolean signal will be replaced by mul-
tivalued signal (door_open, door_closed, door _
undefined). The changes in the system do not influence the
control part stored in application logic table 103 and they are
limited to changes in the input preprocessor 109.

A similar separation effect is achieved on outputs when
using the present invention. Assume that the control details
of switching the motor in FIG. 3A on or off change. For

10

15

20

25

30

35

40

435

50

55

60

65

8

example, a motor needs reverse polarity signals for switch-
ing on and off or the motor 1s a part of a more complex
subsystem requiring some ASCII strings which are inter-
preted as commands. The changes are limited to those in the
output postprocessor 110. The control logic stored in the
application logic table 103 is not influenced by changes
which take place on the real side of the controlled system.

Similarly, if the control conditions which use the input
names (DOOR__CLOSED and DOOR__OPEN) are adapted
to new application requirements the input preprocessor 109
is not affected by the changes. The changes are limited to bit
patterns stored in the application logic table 103. Similarly,
the changes i1n the conditions which produce the output
names do not influence the output postprocessor 110.

The logic of a given application 1s entirely expressed in a
table stored in the application logic table 103. The applica-
tion logic table 103 defines transitions and actions. For each
state the transitions define new states and conditions which
lead to the new state. For each state the actions are per-
formed if certain conditions are fulfilled. In order to reduce
the size and cost of memory, the information about the state
transition conditions as well as the information about the
action conditions are placed in a data table in an optimized
form.

The basic logic item used to express logic condition is a
control word which is a list of input names. Names in the
control word are treated as being linked together with the
implied boolean AND operator. A group of control words is
treated as they were linked together with the implied bool-
can OR operator. In the present invention, these are the only
allowed forms which are used to express logic conditions. In
contrast to conventional systems based on boolean expres-
sions, the NOT operator is not used.

FIG. 4 presents an example of implementation of logical
conditions in a system which may be represented by three
AND conditions (TEMP__HIGH, WAT LOW, WAT
ENA), (DOOR_CLOSED, MOTOR_OK), and (TIM-
EOUT). All names are explained in FIG. 7 (e.g. WAT __ENA
stands for “water__enable”). Expressions in a parenthesis
correspond to one AND condition. In the tested application,
the input word 501 as well as the conditions expressed by
control words 402 through 404 have been implemented as
words where each bit represents one name. The bits repre-
senting the names of a specific AND expression are marked
in FIG. 4. They have value 1 and the other bits have value
0 represented by an empty space. This convention 1s used 1n
the example in FIG. 4 and in all other figures in this
description. In the present invention, the test of the logic
conditions 1S made by comparing the control words 402
through 404 stored 1n the application logic table 103 against
the content of the input word 501 stored in the input register
111. If all 1’s in any of the control words 402 through 404
match 1’s in the input word 501, the condition is TRUE
because the AND conditions represented by the control
words are linked together by the implied OR operator. In
other words, a condition is TRUE if names represented by
1’s in any of the control words stored in the application logic
table 103 are a subset of names represented by 1°s stored in
the input register. In the example in FIG. 4, all 1’s in the
control word 403 match 1’s in the input word 301. Hence,
the condition 1s TRUE.

A schematic diagram of FSMcc i1s shown 1in FIG. 5. The
basic element 1s a FSMcc logical processing unit 114 which
processes an input word 501 and generates an output word
502. The input word 501 is stored in the input register 111
and is supplied there by the input preprocessor 109. The

3,463,543

9

output word 502 is stored in the output register 112 and is
passed from there to the output postprocessor 110. The state
of FSMcc is stored in a state regisiter 113. The FSMcc
Logical processing unit 114 executes a constant program
stored in a FSMcc microcode storage 102. The task of the
FSMcc program is to process content of the application logic

table 103.

FSMcc logical processing unit 114 processes the input
word 501 executing the constant code stored in the FSMcc
microcode storage 102. The code depends on the assumed
model of the finite state machine. FIG. 6 presents a flowchart
of FSMcc logical processing unit 114 (microcode executor)
used to test the present invention. This finite state machine
has combined features of the Mealy and Moore models. The
FSMcc logical processing unit 114 performs three types of
actions: entry actions 625, exit actions 627 and 1input actions
636. According to the flowchart in FIG. 6, entry actions 625
are executed only once in a state when entering the state. The
exit actions 627 are done once when leaving a state. The
input actions 636 are performed always when the content of
the input register has changed. With this model of a finite
state machine, a complex control system has been tested.
Such a model of a finite state machine allowed testing of
transition conditions and conditions for input actions. Both
were expressed as control words stored in the application
logic table 103 as described herein.

After power-up, the FSMcc logical processing unit 114
executes the code performing the initialization phases 622,
623. It copies 622 the application table from storage 105 into
the application logic table 103 and sets 623 an initial value
of a state in the state register 113. Then FSMcc enters
endless loops executing the following steps. It performs
entry actions 625 in the actual state reading the output word
502 of output actions for this state stored in the application

logic table 103 and sending them to the output register 112.
Then it tests 626 whether any transition is due. This is done
by comparing the content of the input register 111 with
control words stored in the application logic table 103
describing transition in the actual state. If a transition to a
new state can be done 631, it performs the exit actions 627
reading their names from the application logic table 103 and
sending them to the output register 112. Then it changes 628
the state. It continues this loop 625, 626, 627, 628 until there
are no more transitions possible 632. In this case, it begins
the other loop—halts and waits 633 for an input change 634.
The input change 634 means a change in the content of the
input register 111. When this happens, FSMcc logical pro-
cessing unit 114 reads 635 the input word and starts execut-
ing the input actions 636. It reads the input action names
from the application logic table 103 and sends them to the
output register 112. Then it returns to the point 637 in the
loops continuing the previously described steps.

The finite state machine as described by the flowchart in
FIG. 6 represents one possible implementation model.
Because of its relatively high flexibility, this specific model
has been chosen for testing purposes. However, this should
not be construed as limiting the scope of the invention but
as merely providing illustration of some of the presently
preferred embodiments of this invention. A conventional

finite state machine per se is not a subject of the present
invention.

METHOD AND APPARATUS FOR SYSTEM
GENERATION

A finite state machine which describes an application or
controlled process or apparatus is specified and implemented
using names which form the normalized environment 1n
which FSMcc operates. Design of the finite state machine

10

15

20

25

30

35

40

45

30

55

60

65

10

for specific application begins with building a list of input
names which will form an input word 501 and a list of output
names which will form an output word S02. The names must
correspond to control information relevant to the specific
application process. Hence, the names are derived from
observation of control information.

FIG. 7 presents examples of input names which have been
used in testing the present invention. A designer is com-
pletely free in chosing names. A boolean signal 701 may be
replaced by one name, or two names if both values of the
signal are used while describing the application logic. A
range of input signal values may be replaced by one name.
For instance, the digit values 702 from 1 through 9 has been
replaced by one name 703 (ANY). A whole range of signal
input values 705 may be neglected (not used), e.g. the
counter values 704 from 2 to a max-1. One signal input value
may generate more names as the discriminator signal 706 in

the example. The value O is replaced by two names 707:
TEMP__HIGH and TEMP_ OUT. The value 2 is replaced by

names 708: TEMP LOW and TEMP OUT.

The boolean parameter 709 has been separated from the
boolean signals 701 to underline its difierent origin. A
parameter 18 not produced by a sensor. It 1s an item of
information loaded from a disk storage 105 or other memory
or from a development system 104. It defines the actual
variant of a control system. The input preprocessor 109
changes the parameter to a name or names exactly as other
input signals.

The example in FIG. 7 demonstrates that using the present
invention does not require boolean signals to be treated in a
distinctive manner. All signals are equal and the role of the
control system designer is to extract the true control infor-
mation by giving the real values of signals appropriate
names. Thus, the boolean signal is treated as having a
maximum of two values. If both of them have a control
significance, two symbols (names) are produced. If only one
boolean value is used for expressing the logic conditions,
only one name must be generaied by the input preprocessor
109. Only these input names can be used to build a state
transition table. The input names are used to express the
control associations leading to state transitions. These con-
trol associations are expressed as logical conditions in the
transition table. The only boolean operators allowed are
AND and OR. The NOT operator must not be used. The
same rules apply to choice of output names. The output
names are used to express the actions to be performed by the
finite state machine.

The state transition table defines the content of the table

-stored in the application logic table 103 used by FSMcc. An

example of the transition table of a tested application 1s
shown in FIG. 8A. This table describes transitions and
actions for one state. The STATE__ ON 801 can change to
STATE_ OFF 802 if the condition CMD_ OFF 803 is ful-
filled. The STATE__ON 801 can change to STATE_IDLE
804 if a complex logical condition is TRUE—one of three
control words 805 (DOOR_CLOSED, MOTOR_ OK),
(TEMP__HIGH, WAT_ _LOW, WAT _ENA) or (TIMEOUT)
is a subset of input word S01. The STATE__ON 801 can
change to STATE__ERROR 806 if one of two control words
807 (DOOR_OPEN, TEMP_HIGH) or (DOOR__OPEN,
WAT_LOW, WAT__ENA) is a subset of input word 501.
When entering the STATE__ON 801, two entry actions 808
(MOTOR__ON, START _TIMER) are performed—a motor
and a timer are started. When leaving the STATE_ ON 801
the exit action 809 (STOP_TIMER) is performed—the
timer is halted. If one of control words 810 (TIMEOUT) or
(WAT_LOW, WAT__ENA) is a subset of the input word

5,463,543

11

501, the input action 811 (ALARM__MOTOR _NOT_ OK)
is carried out—an alarm is generated. If a control word 812
(TEMP_HIGH, DOOR__OPEN) is a subset of the input
word 501, the input action 813 (ALARM_ TEMP__HIGH)
is carried out—an alarm 1s generated. If a control word 814
(DOOR_OPEN, MOTOR__OK) i1s a subset of the input
word 501, two input actions 815 (ALARM_ DOOR__
OPEN, MOTOR__OFF) are carried out-——an alarm 1s gen-
erated and the motor 1s halted.

Using an appropriate tool, the transition table in the form
shown in FIG. 8A is translated to the binary form stored in
the application logic table 103.

FIG. 8B shows how the transition table from FIG. 8A is
stored in application logic table 103 using the technique as
described in the present invention. The entire control infor-
mation which has been expressed in FIG. 8A using uniform
names is stored as control words where each bit represents

one name. For clarity, the control words in FIG. 8B are not
arranged exactly as actually stored in computer memory. In
the computer memory the content of the application logic
table 103 is prepared by a translating program. The drawing
shows exactly the same information for one state (STATE__
ON) which has been presented in FIG. 8A. In this example
the following assumption has been made considering the
maximum sizes of stored information: First, from a given
state only a maximum of four transitions are possible. This
means a state can have a maximum of four next states.
Second, transition conditions are limited to a maximum of
three control words each corresponding to an AND condi-
tion. Third, the number of different groups of input actions
1S limuted to three. Fourth, action conditions are limited to a
mdximum of two control words which correspond to an

AND condition.

The content of words which store the three possible next
states 802, 804, 806 is marked symbolically with their
names: STATE OFFE, STATE_ IDLE, STATE ERROR.
The form of this information 1s not important in the context
of the present invention. In the test application the names
were enumerations or sets. The word 821 is to store the
fourth name of the next state. It is empty as not used in
STATE_ ON. Each word 802, 804, 806 is linked with a
group of three control words 803, 805, 807, each comprising
the transition conditions as specified in the table in FIG. 8A.
For instance, the first control word 805 (counted from top of
the drawing) contains 1°s on positions which correspond to
the group of names (DOOR_CLOSED, MOTOR_ OK).
The second control word 805 contains 1’s on positions
which correspond to the group of names (TEMP_ HIGH,
WAT_ENA, WAT_LOW). The third control word 805
contains 1’s on positions which correspond to the group of
names (TIMEOUT). The same correspondence applies to

control words which contain transition conditions for next
states—STATE IDLE 804 and STATE ERROR 806.

The names of input actions 811, 813, 815 are stored as bits
in words which are linked with a group of three control
words 810, 812, 814, each comprising the control words
expressing the action conditions as specified 1n the table in
FIG. 8A. For instance, the first control word 810 (counted
from top of the drawing) contains 1°s on positions which
correspond to the input name (TIMEOUT). The second
control word 810 contains 1’s on positions which corre-
spond to the input names (WAT__ENA AND WAT__LOW),
The same correspondence applies to control words which
contain input conditions for the other two possible input
actions—3813 and 815. The names of entry and exit actions
are stored as bits in separate words—3808 and 809, which are
not linked with any control words as they are unique for each

10

15

20

25

30

35

40

45

50

55

60

65

12

state.

The form of the data structures in the application logic
table 103 depends on the hardware used and the tools, which
translate the symbolic program expressions into binary
words stored in computer memory.

TABLE 1 shows definitions of data structures used to test
the present invention. The language used was extended
PASCAL ELN as used on real time VAX computers. The
CONST declaration part comprises the maximum number of
transitions (3), condittons (1),(2), and actions (4). The values
chosen in TABLE 1 are equal to the values used 1in FIG. 8B.
The TYPE declaration part begins with definitions of state
names (5), input names (6) and output names (7). All names
used have been taken from the example in FIG. 8A. The dots
in the enumerations (5), (6) and (7) replace names which are
used when specifying a complete finite state machinc. A
simplest word which could be used to store one AND
condition—control word as described 1n the present inven-
tion is an array of boolean, each bit representing one mput
name. To simplify logical operations, a set (8) has been
declared. It corresponds to an array of boolean on the binary
code level. Similarly, a set (9) has been declared to be used
for output names. The array (10) corresponds to one logical
condition which defines a transition condition, for instance
803, 805, 807. The array (11) corresponds to one logical
condition, which defines an action condition, for instance
810, 812, 814. The record (12) links an input action with its
input condition, for instance 811 and 810. The array (13)
declares a structure which contains all input actions for one
state. The record (14) links a next state with its transition
condition as for instance 802 and 803. The array (15)
declares a structure which contains all transitions for one
state. The record (16) links all control information which
describes one state—transition (next), input actions (action),
entry actions (entry) and output actions (exit). The array (17)
declares a structure which contains control information for
all states. In the VAR declaration section, the transition table
is declared as a variable c¢__states (18) of type a__states (17).
This variable is initialized to a value which contains the
description of transition table. TABLE 1 shows the content
of the initializer (19) for one state. The dots replace the
values which must be written defining a complete finite state
machine. The values in the initializer (19) are taken from the
transition table in FIG. 8A.

Using appropriate translation tools a specification table in
FIG. 8A is translated into a binary file. The binary file is
loaded and 1s used to 1mitialize the c__states vanable (18).

TABLE 1

DATA STRUCTURES IN EXTENDED PASCAL FOR
TABLE IN FIG. 8A

CONST

(1)
(2)
(3)
(4)

max_ tcond = 3;
max_ acond = 2;
max__transition = 4;
max__action = 3;

TYPE

e_ state = (... (5)
state__off,
state___idle,
state___on,
state__error

N
e__input = (... (6)

3,463,543

13

TABLE 1-continued

DATA STRUCTURES IN EXTENDED PASCAL FOR
TABLE IN FIG. 8A

door__open,
door__closed,
temp__high,
motor__ok,
timeout,
cmd__ off,
wat_ena,
wat__low,
e S
e_.output = (... (7)
motor__off,
motor__on,
start_ timer,
stop__timet,
alarm__motor__not_ ok,
alarm__temp__high,
T
s_input = PACKED SET OF e_input; (&)
s__output = PACKED SET OF e__output; (9)
a_ tterm = PACKED ARRAY [1..max_ tcond] OF (10)
s__input;
a_ aterm = PACKED ARRAY [l..max_ acond} OF (11)
s__input;
r__action = RECORD (12)
cond : a_ aterm:
act : s__output;
END;
a__action = PACKED ARRAY [1..max__action] OF (13)
r_ achon;
r__transiton = RECORD (14)
state ; ¢__state;
cond : a_ tterm,;
- END;
a_ transition = PACKED ARRAY (15)
[1..max_ transition] OF r__ transition;
r_state = RECORD (16)
next ; a_ transiton,
entry . s__output;
exit : s__output;
action : a__action;
END:;
a__states = ARRAY [e_ state] OF r_ state; (17)
VAR
e__states > a_ states : = ((18)
{state_ on} (19)
({next} ((state__ofi, ([cmd__off],
[],
[1),

(state__idie, (Idoor__closed, motor__ok],
[temp__mgh, wat__low,
wat_ enaj
‘timeout])),

(state__error, 'door__open, temp__high],
door__open, wat__low,
wat__enaj,

[1)
),
{entry} [motor__on, start__timer],
{exit} [stop_timer},
{action} ((([tmeout], [wat__low, wat__ena)),

[alarm_motor_ not_ ok]},
({([temp__high, door__open], |]),
[alarm_ temp_ mghj),
(([motor__ok, door__open],[1),
[alarm__door__open, motor__off])

)

Extraction of control information in the form of names
and the technique of storing logic conditions as control word
results in a considerable decrease of memory size needed for
storing the control data. An example presented in FIG. 9A

10

15

20

25

30

35

40

43

50

55

60

65

14

and FIG. 9B shows the effects which can be obtained even
in a very simple, combinational case.

FIG. 9A comprises the original specification of the output
Y dependent on two inputs A and B, and the solution with
a direct table. The input A can have values between zero and
twenty, the input B can have values between zero and ten.
The output Y can have values between zero and two. The
table 901 describes the problem defining required output
values depending on inputs A and B. If the table is stored, for
instance, in a ROM memory 902 (representing the direct
solution) it requires

21x11=231 bytes of memory.

This assumes that the output will be stored in bytes.

FIG. 9B shows the solution using the techmque as pre-
sented in this invention. The specification table 901 has been
rewritten with names 921 (LOW, MEDIUM, HIGH,
V_HIGH, COLD, WARM). The FIG. 9B shows how the
inputs A,B are changed to names 921 and used to generate
the output Y. This is done by comparing the list of names
stored (input word) in the input register 111 with condition
(control words) stored in application logic table 103. For
instance, if the input A is in the range 903 (3 . . . 8) and the
input B is in the range 994 (0 . . . 5) the input preprocessor
109 generates two names—MEDIUM 922 and COLD 923,
and puts them in the input register 111. An execution unit
functioning as a logical processing unit compares the con-
tent of the input register 111 with the content of application
logic unit 103. It will find a match with a control word 924
which describes the output value 925 (Y=1). The input
preprocessor 109 needs for storing the conversion table:

214+-11=32 bytes.

The output Y is stored in the application logic table 103 as

3%3=9 bytes.

Thus, the overall size of memory requirement is only 41
bytes instead of 231 bytes.

The memory saving when using the present invention
increases with the number of inputs and their value range.
The comparison is made with respect to the direct table
approach. Using a direct table each new input multiplies the
size of a table by its number of possible values. A table for
ten inputs, each having ten values would have ten to tenth
power entries. Assuming that information relevant for the
specified logic condition 1s contained an average of 3 names
per input, the 10 inputs can be replaced by 30 names. These
30 names can be then used to build required logic using
words which are 30 bits long. Even if the application
requires several thousand of conditions expressed as AND-
terms, it can be done without any technical or economical
objections. In contrast to this, a direct table approach is
neither technically nor economically feasible.

This process as described in the present invention has
been used to generate a complex test application based on
miscellaneous hardware and Digital Equipment Corporation
(DEC) computing equipment for controlling a process of
manufacturing integrated circuits.

Various changes and modifications in the invention may
be made without departing from its scope which is limited
only by the following claims and their equivalents.

What is claimed 1is:

1. A control system for a process or apparatus comprising:

a. preprocessing means for deriving input names corre-
sponding to input conditions from input signals,

3,463,543

15

b. a logic unit, which incorporates an application logic
table and separate, application independent, control
code wherein said logic unit executes said control code
and in response to said input names, uses said appii-
cation logic table to produce output names representing
at least one control action which controls the process or

apparatus, and

C. post processing means responsive to said output names
for producing said control action wherein said prepro-
cessing means includes a replaceable conversion table.

2. The control system of claim 1 wherein said postpro-

cessing means includes a replaceable conversion table.

3. A control system for a process or apparatus comprising:

a. preprocessing means for deriving input names corre-
sponding to input conditions from input signals,

b. a logic unit, which incorporates an application logic
table and separate, application independent, control
code wherein said logic unit executes said control code
and in response to said input names, uses said appli-
cation logic table to produce output names representing
at least one control action which controls the process or
apparatus, and

C. post processing means responsive to said output names

for producing said control action.

4. The control system of claim 3 wherein said logic unit
is a finite state machine which includes application inde-
pendent code,

5. The control system of claim 4 further including means
for storing said application logic table.

6. The control system of claim § wherein said application
logic table expresses logical relationships of input names
using only implied boolean AND type operators and implied
boolean OR type operators.

7. The control system of claim 5 wherein said application
logic table includes at least one control word in the form of
a pattern of bits.

8. The control system of claim 5 wherein each input name
1§ represented by at least one bit.

9. The control system of claim 8 wherein plurality of input
names are linked into a data structure by an implied boolean
AND operator to form a control word data structure in the
form of a pattern of bits, and wherein said control word data
structure when interpreted by said logic unit running said
application independent code is interpreted by said logic unit
as if there was a boolean AND operator associated with said
control word data structure,

10. The control system of claim 9 including means for
matching the pattern of bits in an input word with the pattern
of bits in a control word to determine if the pattern of bits
in said control word is a subset of the pattern of bits in said
input word.

11. The control system of claim 10 wherein groups of
control words are linked by the implied boolean OR opera-
tor. ;

12. The control system of claim 3 wherein all of said input
names are in affirmative from.

13. The control system of clat
for storing an input word.

14. The control system of ciaim 3 wherein said names
create a virtual environment for said logic unit.

15. The control system of claim 3 wherein said applica-
tion logic table size is reduced using said names connected
into a data structure using implied AND and implied OR
operators. -

16. The control system of claim 3 wherein said logic unit,
may perform one or any combination of foliowing types of
actions: entry actions, exit actions and input actions.

3 further including means

10

15

20

25

30

35

40

45

50

55

60

65

16

17. A control system for a process or apparatus cCOmpris-

ing:

a. preprocessing means for deriving input names corre-
sponding to input conditions from input signals,

b. a logic unit, which incorporates an application logic
table and separate, application independent, control
code wherein said logic unit executes said control code
and in response to said input names, uses said appli-
cation logic table to produce output names representing
a control action which controls the process or appara-
tus, and

C. post processing means responsive to said output names
for producing said control action wherein said appli-
cation logic table includes entries having at least first or
second values and wherein only said first valued entries
provide control information usable by said logic unit.

18. A control system for a process or apparatus compris-

ing: |

a. preprocessing means for deriving input names corre-
sponding to input conditions from input signals,

b. a logic unit, which incorporates an application logic
table and separate, application independent, control
code wherein said logic unit executes said control code
wherein a plurality of control words are linked together
by the implied Boolean OR operator and in response to
said input names, uses said application logic table to
produce output names representing a control action
which controls the process or apparatus, and

post processing means responsive {o said output names
for producing said control action.
19. A control system specializable for different applica-
tions by an application specific table comprising:
a common processor usable in more than one application;

an input pre-processor, coupled to said common proces-
sor, and, couplable to a plurality of application specific
sensors and other processors;

an output post-processor, coupled to said common pro-
cessor, and couplable to a plurality of application
specific output circuits; and

an application specific table with a plurality of entries,
coupled to said common processor, wherein each said
entry 18 capable of having at least first or second values
and wherein only said first values are used by the
common processor in carrying out a control function
for a selected application.

20. A control system as in claim 19 wherein said entries
each have only first or second values.

21. A control system as in claim 19 wherein at least some
of said entries of said application table are organized into
words with each said word having a common, predeter-
mined, number of entries and wherein said input pre-
processor arranges inputs from the sensors or other proces-
sors into input words having said common number of entries
with each entry therein having at least first or second values.

22. A control system as in claim 21 wherein said common
processor compares said input words from said pre-proces-
sor to one or more pre-stored words of said application
specific table.

23. A control system as in claim 22 wherein said common
processor, responsive to a match between only the first
values of an input word and said first values of a selected one
of said words from said application table, provides a corre-
sponding output indicium to said output post-processor.

24. A control system for a process or apparatus compris-
1ng:

5,463,543

17

preprocessing means for converting an input signal rep-
resenting an observed condition into at least one input
name wherein selected values of said input signal are
each affirmatively represented in a selected form as a
respective nput name, |

a control table which includes a plurality of entries with
one or more of said entries present in said table in said
selected form and with others present in said table in
one or more different forms,

an application dependent table, separate from said pre-
processing means and said control table wherein appli-
cation dependent information 1s stored, and

a logic unit responsive to said input names, said applica-

10

18

tion dependent table and to only said entries present in
said control table which are in said selected form for
producing a control action which conirols the process
or apparatus.

25. The control system of claim 24 wherein said logic
unit, in response to at least said input names produces output
names representing said control action which controls the
process or apparatus, and further including post processing
means responsive to said output names for producing said
control action.

	Front Page
	Drawings
	Specification
	Claims

