
F. Wagner  December 2003 

Dining Philosophers 

Example 
There are some variants of this problem. One of them reads: 

“There are five philosophers sitting at a round table who do nothing but think and eat. Between 
each philosopher there is a single fork. In order to eat, a philosopher must have both forks”.  

This problem is used to discuss multi-process synchronisation problems, like deadlocks and 
starvation. You get these problems if you put some restrictions on the way how a philosopher 
grabs for a fork, for instance first on the right and than waits for the fork on the left. But today I 
do not want to model synchronisation problems – so I realize the working system where a 
philosopher starts eating if both forks at his sides are free. As this example has been invented 
as a Christmas gift - study starvation would not be a proper topic. 

Actually, I took the wording from 
http://www.codeproject.com/csharp/FSMdotNet.asp?target=state%7Cmachine&select=691061
&df=100&forumid=29430&fr=16.5#xx691061xx where I took part in a discussion about state 
machines. You may find it interesting to compare the effort you need if you code something and 
using a ready-made execution system like stateworks. 

A philosopher's behavior is simulated by a state machine represented by the following state 
transition diagram: 

Always alwaysInit

1

ForkL_Free & ForkR_Free

Hungry

2

E:

Eating_OVEREating

3

E: X:

Thinking_OVER

Thinking

4

E: X:

 

The eating time and thinking time are defined by separate timers. The forks are represented by 
Xda objects. 

To simulate the problem we need than 5 state machines, one for each philosopher. The state 
machines are not a system of state machines; they are just 5 separate state machines. The 
dependencies among philosophers (state machines) come into being as they use common 
forks (a left fork of one philosopher is the right fork of his neighbour). 



Running the example 
When you install the StateWORKS Studio you will find the DiningPhilosophers project in the 
folder ..\Project\Examples-Web\TrafficLight. You may try it using StateWORKS development 
tools. You may run the SWLab with the DiningPhilosophers example and monitor the system 
using SWMon and/or SWTerm. The system uses digital outputs to indicate thinking 
philosophers: if a Do is on the philosopher thinks, otherwise he eats or is hungry. In SWMon 
you may change the timeout values for thinking and eating but I can assure you that for any 
combination of timeout values no philosopher will starve (well, assuming that you do not use 
very large values). 

 


