
RTDB
Reference Manual for the Class Library

Release 5.0.6

SW Software

S t a t e W O R K S 

Recent Revision History1

The stateWORKS Release 4.0 adds some useful features like trace to the database items. Some
class interfaces have changed.

The stateWORKS Release 4.1 implements a new dependency mechanism among subclasses of
CItem. The C_NO and CIO_Handler have got a new SetOutput concept. Some classes got
additional interfaces. 4.0 is forward compatible.

The stateWORKS Release 4.2 has improved trace feature, added DDE items and attributes, new
accesses to existing classes, various other changes and improvements.

The stateWORKS Release 4.3 supports internationalization, data objects can be enumerations,
easier use of enumeration class, parameters with extended categories, digital In/Output have invert
attribute, alarm text more complex, alarms sent to the event log, new methods for existing classes.

The stateWORKS Release 4.4 additionally to DDE support acts now as a pure TCP/IP server.
The VFSM execution has now a single step mode to ease debugging of state machine systems.

The stateWORKS Release 5.0 is based on generic C++ and so eases porting to other OS like
Linux or VxWORKS. There is a new item type: STR that allows extensive string parsing.

1 Revision code: r.r.x x is for formal changes only

Copyright 1996 - 2004 SW Software. All rights reserved. No part of this work may be used or reproduced in any form
without the express permission in writing from SW Software

Contents
Introduction... 1

Intended Audience.. 1
Document Conventions... 2

Introduction to the VFSM System Class Library... 3
The VFSM System Class Library... 5

Real-time Database Management... 5
RTDB General Items... 6
RTDB IO-Items.. 6
Accessories to the RTDB Items.. 7
Map of the Class Library.. 8

Integration of the VFSM System into a Win32 Application.. 9
Where to place the VFSM System.. 10
The RTDB Layer Model... 13
Libraries.. 16

Writing IO-Handlers.. 17
Connection to the IO-Hardware... 17
Connection to the Database.. 20
System Startup Phase... 23
System Shutdown... 25
Input-Type IO-Unit... 26
Output-Type IO-Unit.. 30

User Written Output Functions.. 33
Output Functions embedded in the VFSM System.. 34
System Startup Phase... 35
Output Functions at Runtime... 36
Output Functions at System Shutdown... 36
Writing the Output Function Code... 36
Adding the Output Function to the Directory.. 37

The Host Interface to the RTDB... 41
Introduction... 41
Database Manager.. 43
Database Items... 45
TCP/IP Interface.. 46
TCP/IP Client... 52
DDE Interface.. 55

Internationalization Support.. 57

The VFSM System Class Library Reference.. 59
VFSM System Class Library Reference... 61

class Citem.. 61
class C_AL : public CItem... 65
class C_CMD : public CItem... 68
class C_CNT : public CItem.. 70
class C_DAT : public CItem.. 72
class C_DI : public CItem.. 79
class C_DO : public CItem.. 81
class C_ECNT : public C_CNT.. 84
class CItemList.. 85
class CIO_Unit.. 87
class C_NI : public C_DAT.. 91
class C_NO : public C_DAT.. 93
class C_OFUN : public CItem... 97
class C_PAR : public C_DAT.. 98
Class CRegistry... 101
Class CRegistryConf... 103
class CQueueReceiver.. 105
class CQueueSender.. 107
class C_STR: public CItem... 109
class C_SWIP : public CItem.. 112

2

class C_TAB : public CItem... 115
class C_TI : public C_CNT.. 116
class C_UDC : public C_DAT.. 116
class C_UNIT : public CItem... 118
class CUniversal.. 120
class C_VFSM : public CItem.. 123
class C_XDA : public CItem.. 126
class CVfsmSystem.. 128

Declarations.. 131
VSYSTYP.H.. 131

Index.. 143

Introduction

This VFSM System Class Library Reference Manual covers the classes, global functions and
declarations used to build a full fledged control system on the surface of Windows XP/2000/NT
(or generally WIN32) or other Operating Systems. The manual is divided into two parts:

Introduction to the VFSM System Class Library

The VFSM System Class Library Reference

Part 1 shows how to work with the VFSM System classes. Chapter 1 lists the classes in helpful
categories. Chapter 2 shows how to integrate a VFSM System into a VisualC++ application
framework. Chapter 3 describes with examples how to write IO-Handlers, the links to the
input/output hardware. Chapter 4 shows how to write your own output functions to Vfsm’s output
actions. Chapter 5 explains function and details of the host interface to the real-time database. And
at last chapter 6 shows the concept of internationalization of the message texts.

Part 2 contains the following components:

• A description of a selection of the classes used by a system integrator

• A section that explains global declarations

Be aware that the class documentation does not include repeated descriptions of inherited member
functions. Overridden virtual member functions are included if their implementation is different
from the superclass. If not included you must refer to the base classes depicted in the hierarchy
diagram.

The class description is not complete. In principle, it includes classes and methods that are used to
understand and integrate the VFSM System to an application and to write IO-Handlers and output
functions. Not all described classes are really needed when coding but some of them are included
in the manual for better system understanding (for instance the C_VFSM class). Several classes
which are used only internally in the RTDB are completely omitted. The Manual documents ca.
30 classes from 70 classes which are used by the RTDB implementation.

Intended Audience
This manual is designed to be used as a guide for the stateWORKS developer who has an
understanding of object-oriented concepts, multitasking operating systems and C++ programming
language. It is also assumed that the developer knows the stateWORKS Development Tools.

2 Introduction

Document Conventions
This manual uses the following typographic conventions.

Example of Convention Description
CIO_Handler::SetOutput C++ methods and references to classes,

procedure declarations.
stAttrKey In text and method/procedure declarations,

italic letters indicate placeholders. In text
italic words refer to titles, lists or examples.

SYSTYP.H Words in capital letters indicate file names
or constants.

Void SetOutUnit (int
n, WORD w)
{
 int ret = Out(n, w);
}

This font is used for sample code or sample
configuration text. Also for items typically
used in program context, e.g. enumeration.

Associated Item List (AIL) Acronyms are usually spelled out the first
time they are used.

VSFILE_AllWords Global procedures have a preamble
consisting of the module file name
(VSFILE.C/.H)

<NL> Non printable ASCII characters
(e.g. NL = new line = 0x0A)

IOD-File, *.IOD The IOD-file, all files with the extension
IOD

CS_RESET, CC_Reset Enumeration representations for the states of
the several item types are written in all
capital letters. Commands are written with
the first letter capitalised.

C_AL The class of the alarm items. (This doesn’t
apply only to AL items but to all item types)

AL The stateWORKS Studio doesn’t use the
preamble C_. But it means the same as
C_AL.

AL item or C_AL item Used to point out that they belong to the
database

C_AL item object or C_AL
object

Used to point out that a certain instance of
C_AL is meant.

LinkItem Name of the item in a host conversation
(comes from DDE/VisualBasic).

Registered Trade Marks: All trade marks acknowledged as such.

References to “WINDOWS”, Win32, Window NT etc. are all intended to refer to the Microsoft products of those names, as
is quite clear from the context, so ™ , ©and ® symbols have been used sparingly, so as to avoid an irritating appearance
of the document.

References to “WindowsNT” imply various Microsoft products, including Windows NT4 and Windows NT5 – namely
Windows 2000 and Windows XP – and future compatible products.

References to “UNIX” or “UNIX-like” operating systems acknowledge the rights of the UNIX trade-mark holder to that
name.

P A R T 1

Introduction to the
VFSM System Class
Library

: The VFSM System Class Library

: Integration of the VFSM System into a Win32 Application

: Writing IO-Handlers

: User Written Output Functions

: The Host Interface to the RTDB

: Internationalization Support

C H A P T E R 1

The VFSM System
Class Library

This chapter categorizes the classes in the VFSM System Class Library version 5.0. These classes
support control application development for Microsoft® WindowsNT/2000/XP (generally
WIN32) or other Operating Systems, with or without disc storage. (Note that the software is not
based on the Microsdoft Foundation Classes, and this implies compatibility to other systems such
as UNIX™ and derivatives of its ideas such as Linux or VxWorks™.)

Because the class library is built around a Real-time Database (RTDB) containing objects used in
control applications the database item classes are the largest and most important group of classes.
Although the whole system consists of more than seventy classes this manual only describes the
thirty or so that are interesting to system integrators and those users who write their own I/O
handlers and output functions.

The following categories of classes from VFSM System library are presented here:

• RTDB Management

• RTDB General Items

• RTDB I/O-Items

• Accessories to the RTDB Items

At the end of this chapter there is a map showing all these classes and their hierarchical
dependencies.

Real-time Database Management
Management of the databases means at System Startup to build-up the database with its items
according to the Configuration File and the Description Files. At runtime clients have access to the
database that acts as a data server. The following class represents the databases:

CItemList Collection of all the item objects

CItemList is the heart of the Real-time Database. At System Startup it reads the Configuration File
and creates, initializes and connects the database items. During runtime the entries are accessed
directly and fast by pointers. The host interface accesses the items by their names. CItemList
performs this access. Every item has itself a global access to CItemList. So it could talk to any
other item if it knew its name.

6 The VFSM System Class Library

RTDB General Items
The database items perform the control system's control flow. They are created and connected
during System Startup according to the Configuration File. The general items have no direct
connection to the system's environment (except to the file and timer system):

Citem Superclass of all items, performing the systems control flow. This is a virtual
class; there are no instances of this class.

C_AL Alarm object with alarm-text.
C_CMD Command to a Vfsm possibly with command text.
C_CNT Counter with counter-register and constant defining overflow.
C_DAT Holds and organizes a data.
C_ECNT Subclass of C_CNT counting external events.
C_OFUN Connection to the system environment of a user written output function.
C_PAR Subclass of C_DAT holding system's parameters, possibly persistent.
C_SWIP Supervises low and high limits for a C_DAT and C_DAT derived item.
C_STR Extracts substrings from a C_DAT and C_DAT derived item (string) using

regular expressions.
C_TAB Multiplexes several C_DAT and C_DAT derived items to one output.
C_TI Timer object with several timebase options, subclass of C_CNT.
C_UDC Up/Down counter, subclass of C_DAT.
C_VFSM Holds a Virtual Finite State Machine.
C_XDA Holds a certain number of bytes.

The class CItem is the superclass of all item types. The class C_DAT is the superclass of all the
items that additionally perform a data flow especially in a form of C_PAR and C_UDC classes.
The class C_CNT is a superclass of items that perform counting functions, like C_ECNT and
C_TI.

RTDB IO-Items
IO-Items represent the connection to or from the system's peripherals:

C_DI Digital Input.
C_DO Digital Output.
C_NI Numerical Input.
C_NO Numerical Output.
C_UNIT Object collecting several IO-Items.

C_UNIT items have no data and no control flow. They just act as containers for the other IO-
Items. C_NI and C_NO items are subclasses of C_DAT and perform this way a data flow.

Remark The distinction between General and IO-Items does not mean that the General items cannot
connect to system peripherals. Some of them can do this using the dependency mechanism.

Accessories to the RTDB Items
The following accessory classes work together with the database items. They give them the
specific item behavior:

The VFSM System Class Library 7

CAssItemList Collection of items working together with the owner item (C_VFSM,
C_UNIT).

CUniversal Data element in several formats and operators.
CIO_Handler Virtual superclass of the user written IO-Handlers.
CQueueReceiver Message queue receiver with process synchronisation.
CQueueSender Counter part of CQueueReceiver.
CRegistry Access to Registry or Registry (EP parameter persistency)
CRegistryConf Access to Registry or Registry files (System configuration paths)

CAssItemList is used only by C_UNIT and C_VFSM items to store the pointers to the items they
work together with. CUniversal is a universal data type with the according data manipulations. It
is used by all C_DAT type items; it is "the data" in the system's data flow. CIO_Handler is the
superclass of all (user written) IO-Handlers. It holds the connection to one C_UNIT item and
passes this way the appropriate information from the Configuration File to the IO-Handler.
CQueueReceiver and CQueueSender is the implementation of a fast message queue mechanism
usable for instance between IO-Handlers and IO-Handler threads. The CRegistry and
CRegistryConf are used to access Windows Registry or equivalent Registry files in a non-
Windows environment.

8 The VFSM System Class Library

Map of the Class Library
RTDB Manager

 CItemList

RTDB Items

 CItem

 C_AL

 C_ECNT

 C_CMD

 C_CNT

 C_TI

 C_DAT

 C_UDC

 C_PAR

 C_NI

 C_NO

 C_DI

 C_DO

 C_OFUN

 C_SWIP

 C_TAB

 C_UNIT

 C_XDA

 C_VFSM

 C_STR

 Accessories to RTDB Items

 CUniversal

 CIO_Unit

 CQueueReceiver

 CQueueSender

 CRegistry

 CRegistryConf

C H A P T E R 2

Integration of the
VFSM System into a
Win32 Application

This chapter describes how to integrate a VFSM System with the RTDB to a Win32 operating
system like WindowsNT. The environment is assumed to be a Microsoft VisualC++/Foundation
Class Document/View Framework application (MFC).

Remark The RTDB itself is not based on MFC. So it is possible to integrate a VFSM Sytem with any
multi-tasking (real-time) OS.

In the following section we will integrate a VFSM System to a VisualC++ framework. Although
the description is in a form of cook-book, a basic understanding of the VisualC++ workbench is
recommended. Be aware that the result is a very simple application, just to show the hooks of the
system.

First let the Application Wizard create a single document application (MFC in a static library).
Rename the following classes:

Application class to CvfsmApp
Document class to CvfsmDoc
View class to CvfsmView

Then let the Class Wizard generate the methods:

"OnIdle" in CVfsmApp
"OnTimer" in CVfsmView
"OnCreate" in CVfsmView

10 Integration of the VFSM System into a Win32 Application

Where to place the VFSM System
The integration is done in four steps: place the RTDB database, load the configuration file, attach
to system timer, and attach to Windows queue. And sometimes after running the system a very last
step is necessary: destruction of the VFSM System and the RTDB.

Place the database
The database is considered a kind of document, so it is placed in the document class. Enter for that
the declaration of the VFSM System library to the CVfsmDoc's h-file and the database as a
member variable to the class definition:

// Doc.h : interface of the CVfsmDoc class
#include "vswin.h"
class CVfsmDoc : public CDocument
{
// Attributes
public:
 CVfsmSystem m_VfsmSystem;
// other object belongings
}

The CVfsmApp needs to know the database. So it gets a pointer to it. Don't forget to initialize the
pointer to NULL in the class constructor. The CVfsmApp's h-file looks like this:

class CVfsmSystem;
class CVfsmApp : public CWinApp
{
public:
// Attributes

CVfsmSystem* m_pVfsmSystem;
// other object belongings
}

The pointer is connected in the CVfsmDoc's constructor. Add for that the following lines:

CVfsmApp* pWinApp = (CVfsmApp*)AfxGetApp();
 pWinApp->m_pVfsmSystem = &m_VfsmSystem;

StateWORKS Studio generated files
The RTDB library is the heart of the VFSM System. The RTDB contains the VFSM Executor
which carries out specifications of state machines, effectively controlling the application behavior.
The structure of the RTDB and its behavior is specified by a set of files generated by stateWORKS
Studio:

ProjectName.swd Configuration file.
StateMachineName.h Contains enumerations which define: Items used by the state

machine, virtual Input Names, virtual Output Names State
Names and Command Names.

StateMachineName.iod Contains string lists corresponding to enumerations in
StateMachineName.h.

StateMachineName.str Contains strings which define state machine behavior.

Integration of the VFSM System into a Win32 Application 11

UnitName.h Contains enumerations which define Items used by IO-
Handler or Output Function and Command Names.

UnitName.iod Contains string lists corresponding to enumerations in
UnitName.h.

There is one configuration (SWD) file for an application. The configuration file defines all RTDB
items.

Each state machine type and each unit type has its own H-, STR- and IOD-file. The H-files are
used for writing IO-Handlers and Output Functions. The IOD- and STR-files are rather irrelevant
for programming.

Load the Configuration File
Add the following lines. At last the CVfsmDoc's constructor will look something like this:
CVfsmDoc::CVfsmDoc()
{
CVfsmApp* pWinApp = (CVfsmApp*)AfxGetApp();
 pWinApp->m_pVfsmSystem = &m_VfsmSystem;
CString stVfsmDir = "C:\\VS\\VFSMEXA\\DivTests\\";
CString stDataDir = "C:\\VS\\VFSMEXA\\DivTests\\";
CString stConfigName = "C:\\VS\\VFSMEXA\\DivTests\\udc.swd";
bool bConfigOk;
bConfigOk = m_VfsmSystem.Create(ConvertString(stVfsmDir),

 ConvertString(stDataDir),
 ConvertString(stConfigName));

}

The VFSM System needs to know two directories. One directory (stVfsmDir) where it expects the
VFSM description files (the *.IOD and *.STR files) and a second directory (stDataDir) where it
puts the startup log-file. Then it needs the configuration file (stConfigName). Usually all these
files are in the same directory. Of course these lines have to be adapted to the directory where the
files really are. Create() produces a file named SULOG.TXT2 in the stDataDir-directory. It
reports information (date of creation, statistics), warnings (if there are missing objects but the
VFSM System is able to run with default values) and at last errors. Errors are for instance missing
VFSM description files or no configuration file at all. If there are errors Create() returns false.
Then it would be better not to continue. The VFSM System is most likely unable to run and can
even produce an exception. If Create() returns true the database with all its objects and state
machines is created but there is no access to them yet.

Note, that the example used fixed path and file names. A more realistic solution gets the start-up
information from the Windows Registry (see CRegister and CRegisterConf classes) or from
equivalent Registry files for a non-Windows environment.

Attach to System Timer
Add the statement SetTimer() to the CVfsmView's method OnCreate(). It then looks finally like
this:

2 Because there may be entries made later the file sulog.txt remains open until the system stops. It can be read while
open, for instance with the Notebook editor.

12 Integration of the VFSM System into a Win32 Application

int CVfsmView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if (CView::OnCreate(lpCreateStruct) == -1)
return -1;

// TODO: Add your specialized creation code here
CVfsmDoc* pDoc = GetDocument ();
 pDoc->m_VfsmSystem.AttachToMainWindow (this);
 SetTimer (1, 100, NULL);
 return 0;
}

The timer started in the second last line is used as the VFSM System's timebase. CVfsmSystem
class' method TimeBaseTick() is called in the View object's method OnTime() that is called every
100ms by the Windows event handler:

void CVfsmView::OnTimer(UINT nIDEvent)
{
CVfsmDoc* pDoc = GetDocument ();
 if(nIDEvent == 1) pDoc->m_VfsmSystem.TimeBaseTick();
}

Attach to Windows Queue
Complete the CVfsmApp class' method OnIdle() as follows:

bool CVfsmApp::OnIdle(LONG lCount)
{
 if(m_pVfsmSystem != NULL)
 {
 while (m_pVfsmSystem->PollAdviseQueue()) { };
 }
 return CWinApp::OnIdle(lCount);
}

Between the database and the Windows thread there is a message queue. It decouples the real-time
database events from the Windows event queue. OnIdle() is called by the Windows event queue
on its idle time. PollAdviseQueue() checks for entries in the database queue and puts the database
events to the Windows queue in a form of Host (TCP/IP and DDE) events.

The VFSM System's real-time database is now fully functioning. It is able to answer the Host
clients' requests. It handles timer events and it can send these events to its Host clients. What's
missing now is the link to the hardware. There is no connection to input and output hardware yet.

Destruct the VFSM System
The VFSM System is able to destruct itself when the application stops existing. This is the case in
the very simple example above. A more comfortable application should be able to select and
change the database configuration via the framework's file handling. Then it is necessary to
destruct the RTDB programmatically. Use for that the following statement:

m_VfsmSystem.RemoveAll();

This could be placed for instance in the CDocument class' method OnNewDocument().
RemoveAll() deletes all the objects from the real-time database. It is then ready for a next Create()
with another configuration file.

Integration of the VFSM System into a Win32 Application 13

The RTDB Layer Model
The database is located between the interfaces to the Host (which may be typically a User-
Interface) and the IO- and Timer-Handler. It has no direct contact to user or peripherals:

According to the three boxes around the database there are three sources of events:

• from the Host Interface
• from the Timer
• from the IO hardware

Input Events
From the Host Interface
The host interface is message oriented. For instance a GUI (graphical user interface) might reside
in another program or even on a different computer. It has no direct access to the RTDB. It sends
messages containing commands to the RTDB’s host interface. So the arrival of such a message is
an input event.

From the Timer
The Real-time Database is assumed to be invoked every time interval (tick) - for instance every
100ms or every second, so that it can handle its own timer objects. Such a tick doesn't directly
produce events. It rather triggers the timer objects to increment their counter registers. If a timer
object expires, then an event is produced, so only then does the tick produce an event.

From the IO-Handler
In a real-time system we expect most of the events to come from the input hardware. In the VFSM
System these events are typically not produced by the inputs themselves. This only can happen
when there is an interrupt-driven input handler. More typical input handlers are so-called polling
loops which are triggered (or invoked) periodically. Polling means that a regular time intervals all
the inputs are read from the peripherals and checked whether they have changed since the previous
reading. If so, then an input event is produced. But initially the event was triggered by a time
interval just like the timer events. So in the case of input polling there are only two sources of
events to the VFSM System: the User Interface and the Timer. Then the layer model can be
altered to this:

IO-Handler Timer-Handler
Real-time Database (RTDB)

Peripherals

Host Interface
Host (User Interface)

Peripherals

Host Interface
Host (User Interface)

Timer- + IO-Handler
Real-time Database (RTDB)

14 Integration of the VFSM System into a Win32 Application

Output Events
Outputs are events too but only to the outside world, the Host Interface and the peripherals. They
do not trigger the VFSM System; they are produced by it and then forgotten. Of course in a
control system the outputs are the most important thing, but because of their straitforward behavior
they cause us little trouble.

Event Control Flow
The following picture shows some scenarios of control flows. Control flows always start with an
event. Sometimes they are without consequence but usually they end at an output.

1. Command from the User Interface (UI), an output to the peripherals is set.

2. Command from the UI, no output is set. This typically happens, when the UI sets some
data to the database (this is rather a data flow than a control flow) or when the
command is stored in the database for later use (later use means that the occurrence of
this event is a prerequisite in a combination of several events, so the command will be
effective at a later time).

3. An input from the peripherals produces an event. This causes a message to the User
Interface. The UI for instance sets a certain display.

4. An input from the peripherals produces an event that sets an output to the peripherals.

5. An input from the peripherals produces an event. The event is either ignored or stored
in the database for later use (see also 2.) but there is no immediate reaction.

6. One event (from peripherals or UI) can lead to the generation of several messages to the
User Interface and/or several output settings.

VFSM Control Flow
The stateWORKS RTDB implements the virtual finite state machine (VFSM) concept which
insists that data and control flow are separated in the software.

Software operates on data which are processed: transformed, stored or transferred. The task of the
control flow is to decide how and when data are processed.

Data may be of different types: digital (two-valued), integer, float, or strings for example. Software
is triggered by various signals, such as inputs from the external or internal devices, interrupts or
timers. All triggers and data contain control information which we call control values. Examples:

– A digital value is pure control information having two3 control values: On and Off. Note that the
value On may be: true or false, high or low, enabled or disabled depending on the context.

– An integer value may represent commands (Cmd_Start, Cmd_Stop, Cmd_Go, Cmd_Continue,
Cmd_On, Cmd_Off, etc.).

– Ranges of a float value may be represented by control values like: Level_Low, Level_High,
Level_Ok, etc.

3 Actually, in the VFSM concept any data type has also the control value unknown.

Real-time Database RTDB

Peripherals

Host Interface
Host (User Interface)

Timer + IO Handler

63 4 5

21

Integration of the VFSM System into a Win32 Application 15

– Timer expiration may generate a control value: Timer_OVER. Note that in some applications
other Timer states (Timer_Running, Timer_ Stopped, etc.) may have significant control
meanings.

– States of a state machine represent control values: Motor_On, Motor_OnBusy, Motor_OffBusy,
Motor_Off, etc. and are often used as inputs to higher level state machines.

Control values defined in an application should represent the entire control information and should
be used to specify the behaviour of the application software. All control values defined for an
application represent the control information relevant to that application and are called virtual
inputs. For instance, values defined in the examples above may be virtual inputs of a certain
application:

On, Off, Cmd_Start, Cmd_Stop, Cmd_Go, Cmd_Continue, Cmd_On, Cmd_Off, Level_Low,
Level_High, Level_Ok, Timer_OVER, Timer_Running, Timer_ Stopped, Motor_On,
otor_OnBusy, Motor_OffBusy, Motor_Off.

The RTDB filters the control values from external (digital inputs, analog (numerical) inputs,
commands) and internal (timers, counters, parameters, state machines) objects. The VFSM state
machine Executor uses these values, as virtual inputs to control the application.

The same concept applies to outputs. Outputs in the control flow are descriptions (names) of
activities. In contrast to inputs the outputs are not used for control of the software, but represent
only its actions; therefore we omit the word control while speaking about outputs (otherwise we
should use input control values and output control values to distinguish the two). Examples:

– A digital value has two values4 called: On and Off. Note that for instance the value On may be:
true or false, high or low, enabled or disabled, etc. depending on the context.

– An integer value may represent commands (Cmd_Start, Cmd_Stop, Cmd_Go, Cmd_Continue,
Cmd_On, Cmd_Off, etc.) sent typically to other state machines.

– Setting of a float value may be defined as values: No_Off, No_On specifying that a physical
value is to be set, the true data value being irrelevant for control purposes in terms of software
behaviour, even though it will be important for the application.

– Timer control requires values like: Timer_Start, Timer_Reset, Timer_Stop, etc.

As for virtual inputs, virtual outputs are defined as a set of all output values defined for a given
application. For instance, values defined in the examples above may be virtual outputs of a certain
application:

On, Off, Cmd_Start, Cmd_Stop, Cmd_Go, Cmd_Continue, Cmd_On, Cmd_Off, No_Off, No_On,
Timer_Start, Timer_Reset, Timer_Stop.

The VFSM state machine Executor produces these values. The RTDB deals with them, as
actions, by passing them to I/O-Handlers, Output Functions or triggering internal devices.

4 Also in this case outputs have the additional value which exists after the system start-up: the value “not set”. Note also
that for instance the value On once set cannot be removed but is rather replaced by Off.

16 Integration of the VFSM System into a Win32 Application

Libraries
The VFSM System employs three libraries:

1. the Database Library

2. the IOH-Library and

3. the User Output Function Library.

The Database Library is hidden from the user. It only gives access to its classes and methods via
the h-files. The implementation depends on the Operating System. For instance, for Win32 it is
called "WinRTDB.lib" and the h-files are placed in a directory \INC.

The IOH-Library contains all the Input/Output-Handler dependent classes and methods. As these
files have to be written by the user (or the distributor) of the system they are open to the user (h-
and cpp-files).

The User Output Function Library has to be written by the user (or programmer) of the system.
Here, there are the output functions that are not provided by the VFSM system (for instance
arithmetic, data collection, file handling). Of course, like the IOH-Library it is open to the user.

C H A P T E R 3

Writing IO-Handlers

This chapter describes how to write IO-Handlers and how to attach them to the VFSM System.
The same framework example as in the previous chapter is used to explain an example of an IO-
Handler.

An IO-Handler is derived from the CIO_Handler class. CIO_Handler class implements
connections to the database.

Connection to the IO-Hardware
The hardware could be attached directly to the computer bus or it could be connected via a serial
line or a local area network. In any case, the IO-hardware is assumed to be divided into units with
a certain physical address and/or communication port. A unit can have a number of inputs, outputs
or both called the channels. A simple example is a digital input (DI) port. The 8 bits of its data
byte are the 8 channels and its IO-address is the physical address. A hardware unit is represented
(and controlled) by its software counterpart, the IO-Handler. An IO-Handler is a class derived
from the superclass CIO_Handler. It holds all the data and methods needed to control the
appropriate hardware. In the above DI example the IO-Handler would store the last read value to
find out which bits have changed.

Connection to the Input Hardware
The input control flow goes from the electrical signal via input hardware, the IO-Handler to the
Database.

The information whether the switch is open or closed is passed over four connections:

1. The information is produced at the physical interface.

2. The IO-Handler gets (or fetches) the information from the appropriate IO-hardware.

3. The IO-Handler processes the information and places it in the input items of the
database. This is described later in the section "Connection to the Database".

Input Port IO Handler IO-Unit RTDB
1 2 3 4

18 Writing IO-Handlers

The IO-Handler gets (or fetches) the information from the appropriate IO-
hardware:
As mentioned earlier there are two ways to get information from the hardware to the IO-Handler:

− The IO-Handler is invoked by an interrupt from the input hardware itself.

− The IO-Handler is invoked periodically by a timer. Of course within the computer
system this is an interrupt too.

The direct input interrupt could be faster because of the immediate handling and because the
interrupt itself points to the data that have changed. In the polling method some time passes
between the polling cycles, and in every polling cycle all the inputs have to be read because
nobody knows which of them have changed. Nevertheless, although the direct method is more
efficient, in most cases the polling method is employed because of its simpler handling. In both
cases the IO-Handler is invoked or called by an interrupt service routine. The IO-Handler has then
to get the physical address of the data either via the interrupt vector or in the polling method by
stepping through all its physical addresses.

The IO-Handler passes the raw information to the IO-Handler:
Let’s assume, the IO-Handler has just read the raw data from one physical address. It has now to
pass this data exactly to the one IO-Handler object that belongs to this physical address. For every
physical address there must be an IO-Handler of the type that fits to the appropriate hardware.
There are two major ways of running an IO-Handler. An IO-Handler can be passive. It is assumed
to be called periodically by a timer of the application framework. An active IO-Handler is able to
run periodically by itself. It has for that purpose its own thread that wakes it up at certain time
periods. If there are several IO-Handlers of that kind, it happens that two or more of them access a
certain database item at the same time. What happens if one handler sets a database item to one
value and another handler sets it to another value? The database is able to handle this conflict. It
does this by allowing only one thread at the time to access its items. This is implemented by
declaring the database as a Critical Region. Only one thread can enter that region; the others have
to wait.

Connection to the Output Hardware
We look at the control flow between the database and the output hardware.

The output data passes in the same way as described in the input hardware, but in the opposite
direction:

1. This step is described also in the section "Connection to the database". The database
wants to set an output at a specified physical address and channel. To do that it calls a
method of the IO-Handler object. This method is a virtual method of the IO-Handler
object's superclass CIO_Handler. This is because the database doesn't know the IO-
Handler derivation we use for this special output. The database only knows the
superclass. At the moment there are five overlaid methods called SetOutput() to set
data of the type bool, short integer (16Bit), long integer (32Bit) and float (32Bit) to a
specified channel. The fifth produces triggers only the IO-Handler assuming that it is up
to the IO-Handler to supply the data.One of the SetOutput() overlays (which one
depends on the Output-Handler type, the others typically are dummies) calls a routine
of the IO-Handler (with physical address and data) that copies the data to the specified
output hardware.

2. The IO-Handler may be able to write e.g. 8 or 16 output channels at a time.

OutputPortIO HandlerIO-UnitRTDB
1 2 3 4

M

Writing IO-Handlers 19

3. A digital output might, for example, reach an amplifier that drives a motor or a
solenoid. This step is beyond the scope of this description.

20 Writing IO-Handlers

Connection to the Database
So far we saw that for every piece of IO-hardware with a unique physical address region there is
an IO-Handler object of appropriate type or class. Now it goes on this way: every IO-Handler has
exactly one database item of type C_UNIT as a kind of partner or cooperative object:

The reason for this is to keep things local:

• The IO-Handler objects deal with the hardware related things. But they have no knowledge
about the configuration of the database and the IO-Items (these are the digital inputs/outputs,
C_DI or C_DO and the numerical inputs/outputs C_NI or C_NO).

• The C_UNIT database items are created according to the database Configuration File. They
get and keep all the information needed by the partner IO-Handler: the type of the IO-Handler,
the physical address and the IO items that belong to this IO-Handler (for instance which 8 DI
items belong to the 8 bits of the input port). The C_UNIT item has no knowledge how to map
these IO items to the IO-hardware and how to access the hardware.

The cooperation between C_UNIT item object and an IO-Handler object is a typical feature of
Object Oriented Programming (OOP). The connection exists between the class C_UNIT and the
superclass CIO_Handler. The concrete CIO_Handler class inherits the connection to the C_UNIT
items from their superclass. A C_UNIT item object doesn't know the physical IO-Handler object,
only its superclass. Via the superclass's virtual methods it has access to the physical IO-Handler
without knowing about its existence.

The Classes of IO-Handler and C_UNIT
The following section shows the cooperation between the three classes in a diagram. The IO items
are the database items representing one physical in- or output. Their classes are the C_DI, C_DO,
C_NI and C_NO. The C_UNIT items are database items that collect a number of IO items
according to the set of physical IO objects on one physical address (the IO address). The IO-
Handler derived classes represent the physical IO's individual behavior. Toward the database they
are represented by their superclass CIO_Handler. The IO-Handler and the C_UNIT-items are
members of the database. The specific IO-Handlers are members of the IO-Handler.

C_DI

IO Handler IO-Unit C_UNIT
C_DO

C_NI

C_NO

User Written IOH-lib Database RTDB-lib

Writing IO-Handlers 21

 The picture shows two design components: the database and the IO-Handler. The database
component is untouchable by the user; it is a part of the system software. The user (or the
distributor of a VFSM System) can expand the IO-Handler component by writing derived classes
of CIO_Handler. CIO_Handler transmits the instance connections to its derivations.

Remarks Connections are relations like inheritance and membership and so marked as Rx (e.g. R3).
There is not a complete representation of the classes. Members, methods and relations are
omitted if not interesting in this context.

R1,
R2

C_UNIT objects have access to IO items via an object called Associated Item List. This list
has an array of pointers that point to the associated IO items. The array is filled during startup
according to the C_UNIT item's configuration. An element of the array can point to one or no
IO item. IO items can be pointed by none to several C_UNIT item objects (typically by one).

R3 Access to the C_UNIT item's members like physical address and Associated Item List.
R4 CIO_Handler is a virtual class. So all IO-Handlers are objects of a class derived from

CIO_Handler.
R5 Only the output items (C_DO and C_NO) have this connection. They have a member

m_pIOHandler that points to the IO-Handler they belong to and a number m_nChannel that
shows the position within the IO-Handler's array of output items.

How to write IO-Handlers
To write IO-Handlers is a programming task. It is done in the following three steps:

1. Write the IO-Handler’s code in the C++ language

2. Compile and build the library IOH.LIB

3. Link the whole application together with the VFSM System (VSWIN.LIB), the IO-
Handler (IOH.LIB) and the output functions (OFU.LIB)

In the following sections there is a detailed description with an example of the first step. The last
two steps depend on the programming environment and are beyond the scope of this manual.

The partnership between IO-Handler (with IO-Handler) and the database C_UNIT items (with IO-
Items) has four aspects we now look at separately:

1. System Startup Phase

22 Writing IO-Handlers

2. System Shutdown Phase

3. Inputs at Runtime (from input handler to input items)

4. Outputs at Runtime (from output item to the output handler)

Writing IO-Handlers 23

System Startup Phase
From the IO-Handler's point of view startup is done in three steps:

1. Build up the RTDB

2. Initialize the IO-Handler

3. Run the IO-Handler

Build up the RTDB according to the Configuration File is done itself in several phases. This is
beyond the scope of this section: When the IO-Handler steps into life it assumes that the database
is completely built up and ready to run.

Initialize the IO-Handler. The IO-Handler has access to the database via pDoc. It uses this to get
all the C_UNIT items of the system. To get the C_UNIT item objects means to get the pointers to
the objects so that the object's methods are callable. The following code shows only the frame of
the while-loop that asks for all C_UNIT items:

CVfsmDoc* pDoc = GetDocument();
C_UNIT* pUnit;
POSITION pos;
 pUnit = (C_UNIT*)(pDoc->m_VfsmSystem.FirstItem(IT_UNIT, pos));
 while (pUnit != NULL)
 {
 // evaluate pUnit and create appropriate IO-Handler
 pUnit = (C_UNIT*)(pDoc->m_VfsmSystem.NextItem(IT_UNIT,pos));
 } /* End of while() */

pDoc is the access to the database engine that resides in the application's document. The two
methods FirstItem() and NextItem() serve to step through the whole database and get all the items
of a specified type (IT_UNIT is the element of an enumeration, see VSYSTYP.H). The variable
pos serves as the loop counter. First- and NextItem() return a pointer to an object of the superclass
CItem. Because we know, that the object is of type C_UNIT it is copied to the pointer pUnit of
this type. So we have access to the C_UNIT specific methods. That’s all we need from the
database for the moment. Next we have to create the IO-Handler objects according the attributes
of the C_UNIT object. This can differ according the type of the IO-Handler.

Let’s assume that we have smart IO-Handlers that poll autonomously for their inputs. Then the
application framework only has to create the IO-Handler units and keep the pointers in an array.
We need these pointers to destroy the IO-Handlers at system shutdown.

The following piece of code shows the creation of some types of IO-Handlers. We have wrapped
the code into a procedure CreateIOH() that could be called e.g. in the views method OnCreate().

24 Writing IO-Handlers

CIO_Handler* m_apIOHandler[BigEnough]; // keep this as ..
int m_numbIOHandlers; // ..class members
//---
 void CVfsmView::CreateIOH(void)
//---
CVfsmSystem* pVS = &(GetDocument()->m_VfsmSystem);
C_UNIT* pUnit;
POSITION pos;
bool bOk;
{
 m_numbIOHandlers = 0;
 pUnit = (C_UNIT*)(pVS->FirstItem(IT_UNIT, pos));
 while (pUnit != NULL)
 {
 if (pUnit->GetUnitTypeName() == "DI16DO8")
 {
 m_apIOHandler[m_nnumbIOHandler] = new CIO_HandlerDi16Do8;
 bOk = m_apIOHandler[m_nnumbIOHandler]->Create(pUnit);
 }
 if (pUnit->GetUnitTypeName() == "AI8AO2")
 {
 m_apIOHandler[m_nnumbIOHandler] = new CIO_HandlerAi8Ao2;
 bOk = m_apIOHandler[m_nnumbIOHandler]->Create(pUnit);
 }
 // possibly there are other IO-Handler types
 if(bOk)
 {
 m_apIOHandler[m_nnumbIOHandler]->Connect();
 m_nnumbIOHandler++;
 }
 else delete m_apIOHandler[m_nnumbIOHandler];
 pUnit = (C_UNIT*)(pVS->NextItem(IT_UNIT, pos));
 } /* End of while() */
} /* End of CVfsmView::CreateIOH */

The two variables m_apIOHandler and m_numbIOHandlers have to be kept as member variables
in the view class for later use. The while-loop fetches all the IO-Handlers from the database. This
application knows two types of IO-Handlers: "DI16DO8" and "AI8AO2". To know means that
within the IOH-library there are the corresponding classes CIO_HandlerDi16Do8 and
CIO_HandlerAi8Ao2. For every C_UNIT object found in the database the cooperating
CIO_Handler (the appropriate subclass resp.) is instanciated with new. The virtual method
Create() makes the link between these two objects. There are other activities in Create()
depending on the IO-Handler type. Typically input-type IO-Handlers grab for the pointers to all
their input items for faster access at runtime. Then (if Create() was OK) the CIO_Handler's virtual
method Connect() is called. The content of this method also depends on the IO-Handler type.
Typically the output items (C_DO and C_NO) are connected to this IO-Handler object and told
which IO channel number they are.

The VFSM Executor starts in the RTDB before the IO-Handlers are created. It means that the
state machines are initialized without knowing the present inputs. This must be considered during
the state machines specification by introducing an initialization state which assures that the true
start of a system of state machines occurs when the IO-Handlers are operating. Note that delaying
the start of the VFSM Executor is not a better alternative: in such a case the system will lose the
initial events generated by IO-Handlers.

Writing IO-Handlers 25

System Shutdown
A system shutdown always occurs when the application is closed (some applications are able to
remove the current database and to build up a new one without dissolving themselves). The VFSM
system shutdown is done in two stages:

1. Remove the IO-Handler

2. Remove the Real-time Database

Remove the Real-time Database can be done in two ways. The simple case is when the whole
application disappears. Then the instance of CVfsmSystem disappears. Its destructor is able to
remove the database with all its items. The second one is used, if the running application must
remove the database. For that CVfsmSystem has the method RemoveAll(). It does the same as the
destructor.

Remove the IO-Handler is usually too complex to be done in the CIO_Handler's destructors.
Instead they have a virtual method Destroy(). This method can be used to destruct local data
structures and to stop and remove the polling threads. The following example shows a procedure
DeleteIOH that wraps the IO-Handler remove code.

//---
 void CVfsmView::DeleteIOH(void)
//---
{
bool bOk;
 for (int i=0; i<m_nNumbIOHandler; i++)
 {
 bOk = m_apIOHandler[i]->Destroy();
 delete m_apIOHandler[i];
 m_apIOHandler[i] = NULL;
 } /* End of for(i) */
 m_nNumbIOHandler = 0;
}

We have kept the two variables m_apIOHandler and m_numbIOHandlers as member variables in
the class. The for-loop goes through all existing IO-Handler objects and calls their method
Destroy(), then the object itself is deleted.

26 Writing IO-Handlers

Input-Type IO-Handler
In this section we will follow the path of data from the hardware to the input items in the database.
A threaded input-type CIO_Handler subclass will be explained in detail.

Input Handlers
Input Handlers are classes derived from the superclass CIO_Handler. They inherit the methods
GetUnitName(), GetUnitPhysicalAddress(), GetUnitCommPort() and GetUnitTypeName().
Typically the virtual method Create() must be overwritten. In the following we look at an example
of an Input Handler that takes 16 digital inputs packed in a 16 bit word. The example was already
mentioned in the previous sections. This unit will be able to act as an input and also as an Output
Handler. For the moment we just focus on its behavior as an Input Handler. First the declaration of
the class:
#include "vsiou.h"
#include "vsdi.h"
#include "vsdo.h"
class CIO_HandlerDi16Do8 : public CIO_Handler
{
virtual bool Create (C_UNIT* pUnit);
virtual bool Destroy (void);
// ..
// Attributes
protected:
 HANDLE m_hPollThread;
 DWORD m_dwPollThreadID;
public:
 bool m_bRunThread; // if false stop the thread
}; /* End class CIO_HandlerDi16Do8 */

In the Create() method we just create the thread IOUnitPollThread. It gets a pointer to the IO-
Handler class instance itself ((LPVOID) this). So it has the free access to the member variables. If
the thread is correctly created the member variable m_bRunThread is set to true, so that the thread
will keep on looping.

bool CIO_HandlerDi16Do8::Create (C_UNIT* pUnit)
{
bool bOk = CIO_Handler::Create (pUnit);
 if (!bOk) return false;
 m_bRunThread = true;
 m_hPollThread = CreateThread (
 (LPSECURITY_ATTRIBUTES) NULL, 0,
 (LPTHREAD_START_ROUTINE) IOUnitPollThread,
 (LPVOID) this, 0, &m_dwPollThreadID);
 if (m_hPollThread == NULL)
 {
 m_bRunThread = false;
 return false;
 }
 return true;
} /* End of CIO_HandlerDi16Do8::Create */

Before looking to the thread itself we have a look at the method Destroy(). It is called by the
application framework at system shutdown.

Writing IO-Handlers 27

bool CIO_HandlerDi16Do8::Destroy (void)
{
DWORD dwWaitResult;
 m_bRunThread = false;
 dwWaitResult = WaitForSingleObject(m_hPollThread, INFINITE);
 if (dwWaitResult != WAIT_OBJECT_0) return false;
 CloseHandle(m_hPollThread);
 return true;
} /* End of CIO_HandlerDi16Do8::Destroy */

First m_bRunThread is set to false. This will make the thread leaving the polling loop and finish.
Because the thread runs asynchronously one has to wait until the thread is really finished. This is
done by the kernel routine WaitForSingleObject(). It waits5 until the thread is finished. Then the
thread is killed.

The following lines show the code of the polling thread. It first grabs the polling time parameter
and sets the variable dwPollTime that is used within the Sleep(). Then it fetches the pointers to its
DI objects and stores them in an array for faster access at runtime. In the while loop the hardware
digital inputs are read and compared with the old ones. The changed bits are set to the according
DI items.

DWORD FAR PASCAL IOUnitPollThread (CIO_HandlerDi16Do8*
pIOHandler)
{
float fPollTime;
DWORD dwPollTime = 2000L; // Default Value 2 sec
CItem* pItem;
C_DI* apDI[16]; // pointers to the unit's DIs
int nPhyAdr = pIOHandler->GetUnitPhysicalAddress();
WORD wDIs, wOldDIs, wChgDIs;
// Get the poll period time from the IO-Handler's C_UNIT item
 pItem = pIOHandler->GetAssItem(DIOB_PollTime);
 if (pItem != NULL)
 {
 fPollTime = pItem->fGetData();
 if (fPollTime > 0) // fPollTim[sec], dwWaitTime[ms]
 dwPollTime = (DWORD)(1000*fPollTime);
 } /* if (pItem != NULL) */
// Get the pointers to the DIs for faster access
 for (int i=0; i<16; i++)
 apDI[i] = (C_DI*) pIOHandler->GetAssItem(DIOB_Di0+i);
 wChgDIs = 0;
 while(pIOHandler->m_bRunThread) // Endless polling loop
 {
 // fetch DI values at nPhyAdr and put to wDIs
 wChgDIs = wDIs ^ wOldDIs;
 if(wChgDIs)
 {
 // put the changed bits to the DI items
 wOldDIs = wDIs;
 } /* End of if(wChgDIs)
 Sleep(dwPollTime);
 } /* End of while() */
 return true;
} /* End of Thread IOUnitPollThread */

5 To wait means that our thread is removed by the scheduler from the ready queue and put into the wait queue.

28 Writing IO-Handlers

The symbols DIOB_PollTime and DIOB_Di0 are delivered by the stateWORKS Studio by
defining a unit. This example uses the following unit declaration. It is an extract from the
Configuration File delivered by the stateWORKS System Configuration (*.swd file):

UNIT Name = "IOUnit1"
Type = "DI16DO8"
CommPort = "-"
PhysAddr = 1
PollTime = "IOUnit1PollTime"
Di0 = "IOUnit1_Di0"
Di1 = "IOUnit1_Di1"
. .

 Di15 = "IOUnit1_Di15"

The name IOUnit1 is typically not used by the IO-Handlers. It only serves as an access key in the
VFSM System's database. The type is DI16DO8. It is used to create the according IO-Handler
(see CreateIO()). CommPort is not used here. The PhysAddr is used to address the input register.
The parameter item PollTime allows determining the poll frequency via the VFSM System's
database. For this unit the stateWORKS Studio produces the following include file DI16DO8.h.
We can use this enumeration as index to the associated items:

typedef enum
{

DIOB_PollTime = 1,
DIOB_Di0,
DIOB_Di1,

 . .
DIOB_Di15

} ObjectID_DIO;

In this unit instance IOUnit1 the by DIOB_Di1 indexed associated item is the DI item with the
name IOUnit1_Di1.

Now let's have a closer look at the poll thread's while-loop. First the 16 DI values are read from
the hardware in a form of 16 bits in the word wDI. How this works in detail is not part of this
manual. Then the read DI values are processed if they changed at all since the last poll cycle. To
process the DIs means to send the bits that have changed to the corresponding DI items in the
database. The code for that could look like this:

 for(int i=0; i<16; i++)
 {
 if ((apDI[i]) && BitSet(wChgDIs,i))
 apDI[i]->SetValue(BitValue(wDIs,i));
 }

The for-loop goes through all the 16 bits. If one has changed and if it has a DI item in the database
(the pointer to it not NULL) the DI item is updated. That's what DI item's method SetValue() is
for.

Writing IO-Handlers 29

Output-Type IO-Handler
In this section we will follow the route of a control information item (an event) from an output
item in the database to the output hardware. The Output Handlers are of special interest here.

Output Handlers
Output Handlers are also classes derived from the superclass CIO_Handler. Output Handlers must
overwrite the virtual methods Connect() and SetOutput(). In the following we look at an example
that has both, digital inputs and outputs. We take the same example as before and change it so that
it has an additional 8 digital outputs packed in 8 bits of a word. At the moment we just focus on
the behavior as an Output Handler. First we extend the description of our IO-Handler so that it
includes 8 digital outputs. With the stateWORKS Studio the unit declaration is changed as
follows:

typedef enum
{

DIOB_PollTime = 1,
DIOB_Di0,
DIOB_Di1,

 . .
DIOB_Di15
DIOB_Do0,
DIOB_Do1,

 . .
DIOB_Do7

} ObjectID_DIO;
And the configuration could look like this:
UNIT Name = "IOUnit1"

Type = "DI16DO8"
CommPort = "-"
PhysAddr = 1
PollTime = "IOUnit1PollTime"
Di0 = "IOUnit1_Di0"
Di1 = "IOUnit1_Di1"
. .
Di15 = "IOUnit1_Di15"
Do0 = "IOUnit1_D0"
Do1 = "IOUnit1_D1"
. .
Do7 = "IOUnit1_D7"

For instance, the DIOB_Do1 indexed associated item is the DO item with the name IOUnit1_Do1.

Connect the Output Items to an Output Handler
The IO-Handlers virtual method Connect() is called at startup. The units have here the opportunity
to connect to their associated items. Typically this only makes sense for output-type items like
digital or analog outputs. So only output type units have to implement the Connect() method. For
our example it looks as follows:

30 Writing IO-Handlers

void CIO_HandlerDi16Do8::Connect (void)
{
C_DO* pDo;
 for (int i=0; i<7; i++)
 {
 pDo = GetAssItem(DIOB_Do0+i);
 if (pDo) pDo->Connect(this, i)
 }
} /* End of CIO_HandlerDi16Do8::Connect */

The for-loop goes over the number of DOs of that unit. It fetches every pointer and calls the DO
item's method Connect(). The enumeration DIOB_Do0 from the DI16DO8.h-file is taken as a
base of all DOs in this unit. Connect() takes the pointer to this IO-Handler and the index of the DO
item within the IO-Handler. This way every DO item will know in case it changes its value at
runtime which IO-Handler it has to inform and which index it is.

Output Item to Output-Handler
It starts when an output item (digital or numerical output, C_DO, C_NO) is called (by the VFSM
System) to set an output value. Output items keep as a member variable a pointer to the IO-
Handler they belong to and the channel number they have in that IO-Handler. The IO-Handlers
have the following forms of the virtual method SetOutput():
public:
 virtual void SetOutput (bool bVal, int nChan);
 virtual void SetOutput (short nVal, int nChan);
 virtual void SetOutput (long lVal, int nChan);
 virtual void SetOutput (float fVal, int nChan);
 virtual void SetOutput (int nChan);

This is a part of the CIO_Handler class declaration. It shows that output items have the choice to
call one of these methods to set their value to the real output. With pointer (of the type
CIO_Handler) and channel number that they have as a member variable they find the right IO-
Handler and there the right output channel. There are four data formats (bool, integer, long, float)
that cover all kinds of output data. The last SetOutput() method triggers only a channel – the data
must be supplied in the IO-Handler (got from RTDB, calculated, etc., must be used with of
UseSimpleGetOutput(), see the description of the C_NO class).

Output-Handler to IO-Hardware
Output-Handlers are like the Input-Handlers: user written derivations of the superclass
CIO_Handler. Output-Handlers must contain the implementation of the methods Connect() and at
least one of the SetOutput(). The following code shows as an example a SetOutput()
implementation. Our IO-Handler shall be able to handle 8 DOs. It maps them to a word and sends
them in this form to the IO-Hardware:

void CDOUnit16Packed::SetOutput (bool bVal, int nChan)
{
 if(bVal) m_wAllDOs |= (1<<nChan);
 else m_wAllDOs &= ~(1<<nChan);
// put the DO values m_wAllDOs at nPhyAdr
} /* End of CDOUnit16Packed::SetOutput */

The IO-Handler has a member variable m_wAllDOs that stores the 8 DO's value it has sent the last
time. The first two lines of the routine body set or reset the bit indexed by nChan. DOs are
boolean values. At the end the new DO pattern is sent to the IO-Hardware. This depends on the
kind of hardware and is not part of this manual.

C H A P T E R 4

User Written Output
Functions

This chapter describes how to write output functions and how to integrate them to a VFSM
System. We call them output functions because they are called by a Vfsm’s virtual output. In the
following we shall talk about output functions and we always mean user-written output functions.

Output functions are represented in the database by the class C_OFUN. C_OFUN item object
contains a pointer to a user-written output function of the library OFU.LIB. A C_VFSM item
object calls an output function by calling the C_OFUN item's virtual method SetValue(). This
method then calls via its function pointer the appropriate output function. We look at two aspects
separately:

1. Output functions embedded in the VFSM System

2. Writing the output functions code

How to write Output Functions
To write an output function is a programming task. It is done in the following four steps:

1. Write the output function’s code in the C++ language.

2. Add the function with a name to the Output Function Directory.

3. Compile and build the library OFU.LIB

4. Link the whole application together with the VFSM System (VSWIN.LIB), the IO-
Handler (IOH.LIB) and the output functions (OFU.LIB).

In the following sections there is a detailed description with an example of the first two steps. The
last two steps depend on the programming environment and are beyond the scope of this manual.

32 User Written Output Functions

Output Functions embedded in the VFSM System
The following picture shows the connection between the VFSM System's Real-time Database and
the (user written) output function library OFU.LIB. OFUN is the module that contains the function
directory; it is not a class in the C++ sense.

R1, R2 A C_VFSM or C_UNIT item object has (via a CAssItemList object) several item objects as its
associated items. One or more of them is of type C_OFUN (R2).

R3 A C_OFUN item object has a pointer m_pOFun to a function in the OFU.LIB. An output
function can be pointed by several C_OFUN item objects.

R4 A C_OFUN item object has a pointer m_pItem to a C_VFSM or C_UNIT item object
(typically it's the one that owns the C_OFUN object). Via this pointer it has access to a (the)
Vfsm’s or Unit's environment.

Important An output function can be referenced (and called) by several C_OFUN item objects. This is
because the calls to the output function work with the individual environment represented by
the pointer to the owner item. If a control system has several C_VFSM's of the same type that
use a special output function, every instance of them must have its own C_OFUN item object.
These C_OFUN item objects point all to the same output function.

User Written Output Functions 33

System Startup Phase
The startup is divided itself into different phases. For the C_OFUN together with C_VFSM or
C_UNIT items the phases Create and Connect are of special interest.

Create
During the create phase the items are configured according to the Configuration File produced by
the stateWORKS System Configuration. The following example shows a piece of configuration
for a C_VFSM item that uses a C_OFUN and of a C_OFUN that uses that Vfsm's environment:

VFSM Name = "ObjTest"
 Type = "objtest"
 Cmd = "ObjTest-Cmd"
 Tim = "Tim1"
 No = "Unit7-Ao4"
 Par = "Par1"
 OFun = "StepOFun"
OFUN Name = "StepOFun"
 FuncName = "SetStep"
 UnitName = "ObjTest"

A C_VFSM item object with name "ObjTest" has among others the associated item OFun with
the name "StepOFun". The next block describes such an item: the name of the user written output
function shall be "SetStep" and has access to the Unit or Vfsm with the name "ObjTest", what is
the above one. This means, the output function "SetStep" can work with its items, e.g. the C_NO
item No with the name "Unit7-Ao4".

Alternatively, a special C_UNIT items can be created for an output function. The C_UNIT item
should contain all items which the output function is to use.

Connect
The C_OFUN item's method Connect() passes the output function name to the global procedure
GetOutFunc() of OFU.LIB and gets the pointer to the appropriate function and stores it in
m_pOFun for later fast access. Then it passes the unit name to the database manager (see
CItemList) and gets the pointer to the C_VFSM or C_UNIT item object and stores it in m_pItem
also for later fast access.

34 User Written Output Functions

Output Functions at Runtime
At runtime a C_VFSM item object performs several actions (Entry-, Input- and Exit-Actions)
according to its state table and virtual output. According to its IO description (see *.IOD) a virtual
output (VO) is assigned to a database item type and to a value. When the Vfsm performs a VO
that is assigned to a C_OFUN item object, then the specified output function is called. Output
functions have the following form:

int PASCAL funx(CItem* pOwner, int nVOVal)

pOwner typically points to the owner Vfsm. So within this function we have access to that
environment.

Virtual Input, Virtual Output
The stateWORKS Studio lets you to define input and output names and values for an IO object
of type C_OFUN. The output value is passed to the output function in the function parameter
nVOVal. The return value of an output function goes back to the calling C_OFUN object and
represents that item's control value. And this control value again can lead to a virtual input of the
owner Vfsm. This way a user written output function is connected to the VFSM System in two
directions: it gets control information from the owner Vfsm in a form of VOs and it can produce
inputs to the owner in a form of VIs.

Output Functions at System Shutdown
When a C_OFUN item is destructed it calls its output function with nVOVal as -1. This gives the
output function the chance to remove a thread or a dynamically allocated data structure.

Writing the Output Function Code
There is a file OFU.H that contains the declaration of the output functions. The parameter list and
the body of an output function must look like this; otherwise it cannot be added to the Output
Function Directory:

//--
 int Func1 (CItem* pOwner, int nVOVal)
//--
{
// Function body
 return nVIVal;
}

pOwner Pointer to the C_VFSM (or C_UNIT) item object the function can work
with. Typically this is the owner Vfsm, but it could be every other Vfsm
or Unit.

nVOVal Value the virtual output was assigned to. -1 means that the according
C_OFUN item was destructed. pOwner is possibly not valid anymore.

User Written Output Functions 35

The return value is copied to the caller C_OFUN item object's internal value and can this way
produce a virtual input to the Vfsm that owns the C_OFUN item object.

Remarks The corresponding implementation file OFUN.CPP must not be changed

Adding the Output Function to the Directory
In the same file OFUN.H together with the output declaration there is the following data structure:

//---
// Output Function Directory
 r_OFDirectory a_OFDirectory[] =
 {
 "Func1", Func1,
 "Func2", Func2,
 "Func3", Func3,
 "SetStep", SetStep,
 "GahLeakRate", GahLeakRate
 };
//===

Every output function has to be entered here with a name in string representation and its function
name (the pointer to it). The string is the same as entered in the C_OFUN item object's
configuration:

OFUN Name = "StepOFun"
 FuncName = "SetStep"
 UnitName = "StepTest"

Typically you use the same string representation as the function name for better understandability,
but this is not necessary; you could choose different names. At System Startup (Connect Phase)
every C_OFUN item object calls the GetOutFunc() function (also placed in OFUN.H). This
function goes through the data structure a_OFDirectory and compares the function names. If a
function is found, it returns the pointer to the appropriate output function. If not it returns the
pointer to a dummy function that just fulfills the call with doing nothing.

Example
The following example is one of the more complex ones, and interesting because output functions
are used to cause inputs to be processed.. It is used to compute the leak rate in a vacuum chamber.
This is done in three steps:

1. store the start pressure,

2. wait a specified time or a specified pressure increment (whatever happens first),

3. compute the difference between the current and the stored pressure and divide it by the
elapsed time and by the vacuum chamber volume. Store the result in a C_DAT item for
later use.

The output function shall work in the first and the last step. We assume that the Vfsm calls the
output function once via a certain virtual output and a value at the leak rate start and once at the
end via another virtual output and value. These values have to be assigned to the appropriate
virtual outputs with the Vfsm’s IO description (see the corresponding IOD-File produced by the
stateWORKS Studio).

36 User Written Output Functions

Before starting with the output function we will have a look at the configuration of the C_VFSM
item object and at its C_OFUN item object:

OFUN Name = "PHGah-OFuLeakRate"
 FuncName = "GahLeakRate"
 UnitName = "PHGah"
VFSM Name = "PHGah"
 Type = "elegah"
 MyCmd = "PHGah-Cmd"
 TiLeakCheck = "PHGah-TiLeakCheck"
 TiLeakDelay = "PHGah-TiLeakDelay"
 AlLeakRate = "PHGah-AlLeakRate"
 AiIKR = "PHGah-Ai"
 SwipIKR = "PHGah-SwipIkr"
 SwipLeak = "PHGah-SwipLeak"
 OFULeakRate = "PHGah-OFuLeakRate"
 EPChambVol = "PHGah-EPChambVol"
 EPLeakCheck = "PHGah-EPLeakCheck"
 EPLeakDelay = "PHGah-EPLeakDelay"
 EPLeakDiffPres = "PHGah-EPLeakDiffPres"
 EPMaxLeakRate = "PHGah-EPMaxLeakRate"
 DatActLeakRate = "PHGah-DatActLeakRate"
 DatStartPres = "PHGah-DatStartPres"

The C_OFUN item object has as UnitName the "PHGah", what means, it works with that item
objects. The stateWORKS Studio produces the declaration file ELEGAH.H with the typedef:
typedef enum
{

GAHB_MyCmd = 1,
GAHB_TiLeakCheck,
GAHB_TiLeakDelay,
GAHB_AlLeakRate,
GAHB_AiIKR,
GAHB_SwipIKR,
GAHB_SwipLeak,
GAHB_EPChambVol,
GAHB_EPLeakCheck,
GAHB_EPLeakDelay,
GAHB_EPLeakDiffPres,
GAHB_EPMaxLeakRate,
GAHB_OFULeakRate,
GAHB_DatActLeakRate,
GAHB_DatStartPres

} ObjectID_GAH;

The file ELEGAH.H is included in the OFUN.H. So we can access the associated items via the
enumeration.

Be aware that every time the IO dictionary of the Vfsm type "elegah" is changed the OFUN.CPP
as well as the implementation file named for instance ELEGAH.CPP has to be compiled and
linked again. Otherwise the enumeration could point to the wrong items.

Let’s assume that the file ELEGAH.CPP contains the implementation. First we declare the
pointers to the selection of item objects:

User Written Output Functions 37

#include "elegah.h"
//---
 int GahLeakRate (CItem* pOwner, int nVO)
//---
{
 if (nVO == -1) return 0; // need no destruction
}

This line of code checks if the according C_OFUN item is destructed. Here we have nothing to do
in this case, so we leave the function

 if (pOwner->GetUnitTypeName() != "elegah") return 0;

This line of code is for careful programmers. It checks whether the output function works with the
correct Vfsm type. If it is not the case it returns zero which could be analyzed by the calling Vfsm
via its virtual input. In the correct case we let the output function return 1.

C_TIM* pTiLeakCheck;
C_NI* pAiIkr = (C_NI*)(pOwner->GetAssItem(GAHB_AiIKR));
C_SWIP* pSwipLeak;
C_PAR* pEPChambVol;
C_PAR* pEPLeakDiffPres;
CData* pDatActLeakRate;
CData* pDatStartPres =
 (CData*)(pOwner->GetAssItem(GAHB_DatStartPres));
float f;
int nLeakTime;
float fDiffPres, fLeakRate, fChambVol;

The pointers to the seven item objects are declared here. The types are defined in the appropriate
IOD-File. The pAiIkr and pDatStartPres pointers are fetched already here, because we need them
anyway. This is done by calling the pOwner object's method AssItem() with the index of the
appropriate item. The returned pointer is of type CItem; we have to cast it to the according item
type.

 switch (nVO)
 {
 case 1: // Leak Start: code of leak rate start
 break;
 case 2: // Leak Calc: code of leak rate calculation
 break;
 case -1: // possibly destroy dynamic data
 default: return 0;
 } /* End of switch */
 return 1;
} /* End of GahLeakRate */

The switch statement selects one of the virtual output values, 1 for the leak rate start and 2 for the
leak rate end respectively its calculation. For both of these values we return 1 which signals OK to
the Vfsm. Other values of nVO are ignored and acknowledged with a zero return value.

A special nVO value is -1. The output functions are called with this value at system shutdown to
give them the chance to remove possibly created dynamic data or threads. Our output function
here does not need this feature.

Here is the complete code of the first case section:

38 User Written Output Functions

 case 1: // Leak Start
 pSwipLeak = (C_SWIP*)(pOwner->GetAssItem(GAHB_SwipLeak));
 pEPLeakDiffPres =
 (C_PAR*)(pOwner->GetAssItem(GAHB_EPLeakDiffPres));
 f = pAiIkr->fGetData();
 pDatStartPres->SetData(f);

 f = f + pEPLeakDiffPres->fGetData();
 pSwipLeak->SetLimits(f, f);
 break;

The first two lines fetch the pointers to the rest of the used items, a switch point and a parameter
specifying the maximum pressure difference. The next two lines fetch the current pressure and
store it to a C_DAT item. The last two lines compute the absolute end pressure and set it to the
switch point (limit low and high are equal because we only need the LOW and HIGH SWIP
states).

The Vfsm will now wait until either the timer expires or the pressure limit is reached. Then it
probably will change its state and call the output function again, but with a virtual output value of
2. Then the following case section will be executed:

 case 2: // Leak Calc
 pTiLeakCheck =
 (C_TIM*)(pOwner->GetAssItem(GAHB_TiLeakCheck));
 pEPChambVol =
 (C_PAR*)(pOwner->GetAssItem(GAHB_EPChambVol));
 pDatActLeakRate =
 (CData*)(pOwner->GetAssItem(GAHB_DatActLeakRate));
 fDiffPres = pAiIkr->fGetData() -
 pDatStartPres->fGetData();
 nLeakTime = pTiLeakCheck->GetCountRegister();
 fChambVol = pEPChambVol->fGetData();
 if((nLeakTime != 0) && (fChambVol != 0.0))
 fLeakRate = fDiffPres / nLeakTime / fChambVol;
 else
 fLeakRate = (float)0.0;
 pDatActLeakRate->SetData(fLeakRate);
 break;

First the pointers to the items used here are fetched again. Then we fetch the current timer and
current and start pressure values and compute the pressure difference (we need the current values
because we don't know what the reason for the end leak check was: the timer, the pressure or
something else). The leak rate is computed according to the leak rate formula. Of course we try to
make everything as safe as possible, so we test the two divisors first for zero, to get no exception
during runtime. At the end the value is stored to the appropriate C_DAT item object, either for
display only or more probably to test the value by means of another switch point (SWIP).

C H A P T E R 5

The Host Interface to
the RTDB

This chapter describes the VFSM System as a server application. The interface to a client from the
RTDB point of view is called the Host Interface.

Only the general behavior of the host interface is described in this chapter. The item specific
behavior is described in part 2 for every item type separately.

Introduction
The host interface was mentioned the first time in the description of the RTDB layer model as
something that can produce events to, or get events from the RTDB. Here we focus on what is
exactly between the Host and the Host-Interface.

The interface between a host and the RTDB’s Host-Interface is of client-server type. The RTDB is
the server and a host is a client. The RTDB is able to serve an almost infinite number of clients at
the same time with different protocols. At the time of writing a TCP/IP based message protocol
and DDE interface (Direct Data Exchange, only for Windows based RTDB) are available. Others
may follow in the future.

There are the following access types:

• Request/Reply: The client asks something and gets an answer from the RTDB.

• Poke: The client changes something in the RTDB.

• Event: The client gets informed that something changed in the RTDB. This of course only
happens under the client’s control with AdviseStart/Stop requests.

Accessible objects are all the Database Items, the RTDB items created during startup according
the configuration file. Additionally, there is a Database Manager with general objects holding
information regarding the behavior of the whole VFSM system.

Database access is organized as a key and an attribute. The key is the name of a certain database
object. Depending on the object type various attributes are available. The representation of the
key, attribute and value is protocol dependent. The TCP/IP message protocol represents the name
as a string, the attribute as a number and the values again as strings. The DDE interface packs
name and attribute into one string and the value into another string.

Attributes
The set of attributes is predefined. Not all attributes are applicable to all item types. The following
list shows all the available attributes.

Host Interface

Host (User Interface)

Real-time Database (RTDB)

40 The Host Interface to the RTDB

Attribute Name Number Short Comment
None 0 State or value of an item as

number
Value 1 Val ditto
ServiceMode 2 SvM Boolean value, service mode

on/off
ServiceValue 3 SvV Value, format depending on

item type
PeripheralValue 4 PeV ditto
VI 5 VI Virtual input of a VFSM item
StateName 6 StN Same as Value, as name
AssocItemList 7 AIL Items which belong to a VFSM

or UNIT
TypeName 8 Typ E.g. the definition file name

of a VFSM
CountConstant 9 CnC E.g. time constant in a timer

item
CountRegister 10 CnR E.g. current time of timer

item
Category 11 Cat Additional information for

alarm and parameter items
Format 12 Frm The data format of a data

item
PhysicalUnit 13 Uni The unit (e.g. V for voltage)
LimitLow 14 LiL Used in switchpoint and param

items
LimitHigh 15 LiH ditto
InitValue 16 IVa Used for parameter items as

start value
DataValue 17 Dat The content of a data item
Text 18 Txt Alarm text of a ALA item
Acknowledge 19 Ack Acknowledge a pending alarm
Time 20 Tim Time when an alarm occurred
ScaleFactor 21 ScF Used in NI and NO items
Offset 22 Ofs ditto
ScaleMode 23 ScM ditto
List 24 Lst For example a list of all

VFSM state names
PhysAddr 25 PAd Used in IO-Handlers, e.g.

port number
CommPort 26 Com ditto - could be a TCP/IP

address, or a serial port
name

Trace 27 Trc Turn on/off tracing of an
item

RunMode 28 Rmo Put VFSM in Free/Step/Hold-
Mode

NextStep 29 NSt Name of the next possible
transition

Remarks The attribute number is used in the TCP/IP based messages.
The abbreviation, the short form is used in the Host interface as extention to the item name.
More detailed information will follow together with the description of the item types.

The Host Interface to the RTDB 41

Database Manager
The database manager represents information about the RTDB itself. The objects available are
independent of the RTDB configuration; their values are not.

Database Configuration
A client can request name and path of the current configuration file and the total number of all
database items. The name is “IL”. No attribute means the config file and the CountRegister-
attribute delivers the number of items.

Example: Name Attribute Reply
“IL” none “C:\StateWORKS\Examples\Ex1\openclose.swd”
“IL” CountRegister “34” (a total of 34 items are in the RTDB)

Database Contents
A client application can request the statistics about certain database items. The name is a string
with the abbreviation of the item type. The List-attribute delivers a string with the names of all
items of the according type separated by <NL> characters (new line = 0x0A). The CountRegister-
attribute delivers the number accordingly.

Example: Name Attribute Reply
“AL” List “Alarm1<NL>Alarm2<NL>Alarm3”
“AL” CountRegister “3” (a total of 3 alarm items in the RTDB)

Alarm Handler
The database manager maintains an alarm queue. An alarm item object that gets into an active
state is appended to this queue. The item with the name "AL" represents the first (and visible)
alarm item of the alarm queue. To poke an Acknowledge to that alarm makes it vanish from the
queue. The next alarm will be sent as an update. So the client (destination) application can step
through all active alarms. The item "AL" has the same attributes as a normal alarm item:

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R Alarm’s state as number, see e_ALA_States
State Name R Alarm’s state as a text string
Type Name R Name of the alarm item represented by AL
Category R Text defined in stateWORKS Studio/AL-Properties
Text R Alarm text defined in stateWORKS Studio/AL-Properties
Time R Time and date when alarm's state was entered
Acknowledge W Empty message, command to state machine

Example: Name Attribute Reply
“AL” TypeName “Alarm2” if Alarm2 is on top of the alarm queue

42 The Host Interface to the RTDB

Item Trace
The VFSM System is able to trace the database item’s value changes and put them into a trace file
together with a time stamp. For every item, tracing can be turned on and off individually by
setting/resetting the trace flag. All item types have on their host interface the read/write attribute
“.Trc“. A value of “1“ means that the trace is on for that item (or “0“ for off). Trace can only take
place when the trace file is open.

The trace file is opened automatically at system start up under the name “TRACE.TXT“6 in the
same directory as the configuration file. At system stop the file is closed again. To open and close
the trace file during system run there is an item with the name “IL” and the attribute Trace:

Attribute Access Description
Trace Write Send a trace command to the trace manager
Trace Read Get the state of the trace file and traced items

The following trace command numbers are possible:

1. Open File. The trace file is opened (if it is not already opened). The activated items can
trace their value changes from now on.

2. Close File. The trace file is closed. The activated item cannot trace (information is lost).

3. Reset Trace. Set the tracing of all items off.

Example: Name Attribute Poke Comment
“IL” Trace 3 The trace flags of all RTDB items are reset, no trace
The state of trace manager can be requested (no automatic update). The following values are
possible:

1. Trace file is open; there are one or more items with activated trace.

2. Trace file is closed; there are one or more items with activated trace.

3. Trace file is open; there is no item with activated trace.

4. Trace file is closed; there is no item with activated trace.

Example: Name Attribute Reply Comment
“IL” Trace “3” Trace file is open but no trace flag set

6 The trace file entries are immediately flushed. So the file can be read while the system runs, for instance with the
Notebook editor. The resolution is milliseconds as in “10:36:20,009”

The Host Interface to the RTDB 43

Database Items
The behavior of the database items in a host conversation is described in detail in part 2 of this
manual. Here follows a table with all the item types and all the attributes they support.

R, W and X are the access modes:

R the attribute on this item type is read only (request only).

W is write (poke) only

X is read and write.

All the attributes support the automatic and manual link mode.

Attribute Name Short V
F
S
M

C
M
D

T
I

A
L

D
I

D
O

N
O

N
I

S
W
I
P

X
D
A

P
A
R

O
F
U
N

S
T
R

C
N
T

D
A
T

U
N
I
T

E
C
N
T

U
D
C

T
A
B

Value R R X R R R R R X X R X X X R X X X
Value Val R R X R R R R R X R X X X R X X
ServiceMode SvM X X X X X
ServiceValue SvV X X X X X
PeripheralValue PeV R X R R R
VI VI R
StateName StN R R R R R R R R R R R R
AssocItemList AIL R R R
TypeName Typ R R R
CountConstant CnC X X X
CountRegister CnR R R R
Category Cat R R
Format Frm R R R R R
PhysicalUnit Uni R R R R R R
LimitLow LiL R X R
LimitHigh LiH X R
InitValue IVa R X
DataValue Dat X R R X X R
Text Txt R
Acknowledge Ack W
Time Tim R
ScaleFactor ScF R R
Offset Ofs R R
ScaleMode ScM R R
List Lst R R
PhysAddr PAd R
CommPort Com R
Trace Trc X X X X X X X X X X X X X X X X X X X
RunMode RMo X
NextStep NSt R

44 The Host Interface to the RTDB

TCP/IP Interface
The design goal was a simple and fast interface, free of more or less platform specific standards
like COM, CORBA or XML. The implementation of any sort of client is very easy. The only
specific aspect is a message package that is used for all types of transactions. The rest is standard
TCP/IP programming.

Architecture
Per client there is one port with two sockets. Port and sockets get opened and closed on client’s
demand. Of course if the RTDB application exits it closes all open ports. Also if the RTDB
recognizes that a client silently disappeared, it closes that particular port.

The sockets are called Request/Reply Socket (RRS) and Event Socket (ES). From the client
application point of view the RRS is a synchronous connection. The client sends a request and
immediately gets a reply. The ES on the other hand is asynchronous. The RTDB (server) can send
a message to the client at any time (the client has to acknowledge it immediately). This type of
messages is also called unsolicited messages. They are characteristic of event driven systems.

Establish Connection
The client creates and connects two sockets immediately after each other on the same port. The
RTDB uses 9091 as the standard port number.

The previous pseudo code shows the procedure of connecting a port to the RTDB with two
sockets. First the RTDB application has to finish initialization. During this it starts up the TCP/IP
interface as a server with create, bind and listen. Finally it waits on accept for the first client. Now
a client can begin with the connection. It first creates the Request/Reply Socket and connects it to

 Request Reply Event Ackn

TCP/IP Interface

Host (Client)

Real-time Database (RTDB)

 Request/Reply Event
 Socket Socket

TCP/IP Interface

Host (Client)
Create(), Bind(), Listen()
 (at startup)

reqReplySocket.Create()
reqReplySocket.Connect(RTDBIPAddress,
RTDBport)

Client1.reqReplySocket = Accept()

eventSocket.Create()
eventSocket.Connect(RTDBIPAddress,
RTDBport)

Client1.eventSocket = Accept()

wait for first client

wait for next client

(wait for
connection)

(wait for
connection)

(wait for event socket)

The Host Interface to the RTDB 45

the address and port number of the RTDB application. Then it waits for completion. In the
meantime the server accepts and handles the first connection as the RRS. This makes the client go
on for the second connection. Same procedure here: Create and connect the same address and port
number.

Now the client server connection is established and ready to work. Of course this is quite a
simplified description of the client actions. Typically a client application would wrap the event
socket into an own thread so that the event mechanism becomes really asynchronous.

Message Packet
The client packs a request into a message packet and sends it to the RRS. It immediately receives
the reply (packed into another message packet). If the RTDB has to advise the client about a
change on a certain item it packs the according information into a message packet. The client
receives it on the event socket and has to return an acknowledge; again in a message packet. The
format of the message packet is declared in the file vstypip.h. The following excerpt from this
file shows the declaration of the message packet itself:
 struct r_MessagePack{
 int nHeader;
 e_MessageType MessageType;
 e_Topic Topic;
 e_ItemAttributes IAtt;
 e_ItemSearchResults MessageInfo;
 char cItemName[NAMESIZE];
 char cItemValue[VALUESIZE];
 };

Size
[bytes]

Description

nHeader 4 This integer has no direct meaning. I can be set to any
value in the request packet. The RTDB copies the
value into the reply packet.

MessageType 4 The type of message (request, reply, advise..).
Topic 4 Until now the only valid value is IL (2).
IAtt 4 What attribute of the item we are talking about (see

description in the previous section), declaration in the
file vsystyp.h.

MessageInfo 4 Result of the request (Ok, no such request, no such
item, no such attribute), declaration in the file
vsystyp.h.

cItemName 64 Item name as array of characters, zero terminated
cItemValue 0..1000 Value of the item attribute; text representation as array

of characters; zero (null character) terminated.

Message Type
Describes the kind of message packet. Depends on the kind of request and reply or event.
enum e_MessageType { MT_none = 0,
MT_Request, MT_Reply, MT_Poke, MT_AdvStart, MT_AdvStop,
MT_AdvData, MT_AdvAckn, MT_Disconnect, MT_Last };

46 The Host Interface to the RTDB

Scenarios
The following section illustrates all types of client/server and server/client transactions (item
name, attribute and value are examples).

Request the Value of an Item Attribute
The client wants to know the value of a certain item attribute. It writes the according message
packet to the RRS. It can immediately receive the reply from the same socket. The request was
correct, so the message info is SR_ok.

The following example shows a failed request. The particular item does not have the attribute. So
the message info is SR_NoSuchAttribute and of course there is no value available.

RTDB TCP/IP InterfaceHost (Client)

Header = 123456789
MessType = MT_Request
Topic = TO_IL
Attribute = IAtt_Value
MessInfo = ignored

reqReplySocket.Write()

reqReplySocket.Receive()

Name = `DiOpen` Header = 123456789
MessType = MT_Reply
Topic = TO_IL
Attribute = IAtt_Value

Name = `DiOpen`
Value = `1`

MessInfo = SR_ok

RTDB TCP/IP InterfaceHost (Client)

Header = 123456790
MessType = MT_Request
Topic = TO_IL
Attr = IAtt_DataValue
MessInfo = ignored

reqReplySocket.Write()

reqReplySocket.Receive()

Name = `DiOpen` Header = 123456790
MessType = MT_Reply
Topic = TO_IL
Attribute = IAtt_Value
MI=SR_NoSuchAttribute
Name = `DiOpen`

The Host Interface to the RTDB 47

Poke the Value of an Item Attribute
The client wants to change the value of a certain item attribute. It writes a poke message packet to
the RRS and can receive the answer that contains the changed item attribute.

Advise, Event Data and Unadvise
The client wants to get advised when a certain item attribute changes. As a reply it gets the current
value of the according item attribute.

If the advised item attribute changes its value the RTDB sends the change as an event message
packet over the event socket to the client.

RTDB TCP/IP InterfaceHost (Client)

Header = 123456792
MessType = MT_AdvStart
Topic = TO_IL
Attribute = IAtt_Value
MessInfo = ignored

reqReplySocket.Write()

reqReplySocket.Receive()

Name = `DiOpen` Header = 123456792
MessType = MT_AdvStart
Topic = TO_IL
Attribute = IAtt_Value

Name = `DiOpen`
Value = `1`

MessInfo = SR_ok

RTDB TCP/IP InterfaceHost (Client)

reqReplySocket.Write()

Header = 123456791
MessType = MT_Reply
Topic = TO_IL
Attribute = IAtt_Value
Name = `DiOpen`

Value = `0`

reqReplySocket.Receive()

Header = 123456791
MessType = MT_Poke
Topic = TO_IL
Attr = IAtt_ServiceMode
Name = `DiOpen`
MessInfo = ignored
Value = `0`

MessInfo = SR_ok

48 The Host Interface to the RTDB

Now the client wants to be no longer advised about the item attribute.

Disconnect Event

If the RTDB disappears for whatever reason it sends a disconnect event over the event socket to
the client. No answer is expected.

RTDB TCP/IP InterfaceHost (Client)

Header = ignored
MessType = MT_AdvAckn eventSocket.Write()

eventSocket.Receive()

Header = 0
MessType = MT_AdvData
Topic = TO_IL
Attribute = IAtt_Value

Name = `DiOpen`
Value = `0`

MessInfo = SR_ok

RTDB TCP/IP InterfaceHost (Client)

Header = 123456793
MessType = MT_AdvStop
Topic = TO_IL
Attribute = IAtt_Value
MessInfo = ignored

reqReplySocket.Write()

reqReplySocket.Receive()

Name = `DiOpen` Header = 123456793
MessType = MT_AdvStop
Topic = TO_IL
Attribute = IAtt_Value

Name = `DiOpen`
MessInfo = SR_ok

reqReplySocket.Receive()

Header = -1

MessTyp=MT_Disconnect
Topic = TO_IL
Attribute = IAtt_none
MessInfo = SR_ok

The Host Interface to the RTDB 49

Interplatform Connection
The design goal was to get an interface between all types of CPU, programming languages and
operating systems. This requires some care in filling in the message packet. The first five fields are
binary data that may be interpreted depending on the platform as little- or big-endian. To avoid
getting into trouble with data formats TCP/IP socket implementations provide the programmer
with a pair of functions like:

u_long ntohl (u_long netlong); and

u_long htonl (u_long hostlong);
The ntohl function converts a u_long from TCP/IP network order to host byte order (which is
big- or little-endian) and htonl function converts a u_long from host to TCP/IP network byte
order (which is always big-endian).

50 The Host Interface to the RTDB

TCP/IP Client
There is a library and a DLL available which hide the complexity of the TCP/IP interface and
make the design of clients easy. The following text describes the DLL interface. The library
variant is similar and is defined in the tcpip.h file.

#include “tcpipclient_dll.h”

Dll functions
Initialize1 Stores the callback function and environment pointer.
Connect1 Creates sockets and connects via the according sockets to the

addressed RTDB server port.
Connected1 Returns the value true or false signalling whether the client is

connected or not.
Disconnect1 Disconnects the RTDB server port from the sockets.
Request1 Asks for the attribute value of a corresponding RTDB object.
Poke1 Sets the attribute value of a corresponding RTDB object.
AdviseStart1 Asks for advise of a corresponding RTDB object attribute.
AdviseStop1 Asks for unadvise of a corresponding RTDB object attribute.
UnAdviseAll1 Asks for unadvised of all RTDB object attributes.

Initialize1
void __stdcall Initialize1(void (*ReplyOrEvent)(int Rep, const string& stName,

 const string& pstVal, void* pOwner),
 void* pOwner);

Remarks Stores the callback function and environment pointer. Used in an object oriented environment to
store the this pointer and the pointer to the callback function. The callback function is then called
by events arriving from advised RTDB object attributes.

Connect1
bool __stdcall Connect1(char* pstIPAddress = HOST, int nPort = PORTNUMBER);

Remarks Creates sockets and connects via the according sockets to the addressed RTDB server port. The
default TCP/IP address is the HOST=LOCALHOST=127.0.0.1, the default port PORTNUMBER =
9091.

Return Value true if connected is successful otherwise false.

Connected1
bool __stdcall Connected1();

Remarks Returns the value true or false signalling whether the client is connected or not.
Return Value true if the client is connected otherwise false.

Disconnect1
void __stdcall Disconnect1(bool bWithUnAdvise = false);

Remarks Disconnects the RTDB server port from the sockets. If called with parameter bWithUnAdvise=true
the function unadvises all RTDB objects attributes.

The Host Interface to the RTDB 51

Request1
bool __stdcall Request1(char* pstItemName,

 e_ItemAttributes eIAtt = IAtt_None,
 char* pstValue = NULL);

Remarks Asks for the attribute value of a corresponding RTDB object.
Return Value true if the Request function is successful, otherwise false

Poke1
bool __stdcall Poke1(char* pstItemName,

 char* pstValue,
 e_ItemAttributes eIAtt = IAtt_None);

Remarks Sets the attribute value of a corresponding RTDB object.
Return Value true if the Poke function is successful, otherwise false

AdviseAtart1
bool __stdcall AdviseStart1(char* pstItemName,

 e_ItemAttributes eIAtt = IAtt_None,
 char* pstValue = NULL);

Remarks Asks for advise of a corresponding RTDB object attribute.
Return Value true if the AdviseStart function is successful, otherwise false

AdviseStop1
bool __stdcall AdviseStop1(char* pstItemName,

 e_ItemAttributes eIAtt = IAtt_None);

Remarks Asks for unadvise of a corresponding RTDB object attribute.
Return Value true if the AdviseStop function is successful, otherwise false

UnAdviseAll1
void __stdcall UnAdviseAll1();

Remarks Asks for unadvised of all RTDB object attributes.
Return Value true if the UnAdviseAll function is successful, otherwise false

The Host Interface to the RTDB 53

DDE Interface
This interface type only works for Microsoft Windows applications and for the RTDB
implemented on Microsoft Windows (NT4.0 and later or in general WIN32). The RTDB
delivered in the library RTDB.LIB for Windows integrated on a VFSM System as a WIN32
application is able to work as a DDE source application. With DDE (Dynamic Data Exchange)
Windows applications are linked, allowing the transfer of data. DDE establishes a conversation
between two applications. The application that initiates the conversation is called the destination.
The target of the DDE conversation is called the source.

Remark In this chapter RTDB for WIN32 is called RTDBWin if an issue is DDE specific.

The RTDBWin is the data server and so in a DDE conversation the source. The client or the
destination is typically a user interface application for instance written in VisualBasic (VB). The
following text assumes that the client has been written in VB.

Name and Topic
To establish a DDE conversion, the destination application must specify the name of the source
application, a topic and the item. The application (the WIN32 VFSM System) has the name "VS"
and the RTDBWin topic is "IL". So a VB source application would specify for the variables
vfsmList and vfsm1VI:

 vfsmList.LinkTopic = "VS|IL"
 vfsm1VI.LinkTopic = "VS|IL"

Item
The DDE item specification for the RTDBWin is a string consisting of the name of a database
item, a “.” as separator and an extension that specifies a certain attribute of that item. If there were
for instance a state machine with the name "Vfsm1" in the database, then the following first VB
line would link the Virtual Input of that state machine to the variable vfsm1VI:

 vfsm1VI.LinkItem = "Vfsm1.VI"
 vfsmList.LinkItem = "VFSM.Lst"

The second line links the list of all vfsm instances to the variable vfsmList. Be aware that the two
variables in the VB application have no values yet.

54 The Host Interface to the RTDB

Link Types
The RTDBWin supports the link types manual and automatic. With an automatic link, the
destination application is updated automatically whenever the item changes in the database. In
manual link mode, the database only sends an update when requested by the destination
application.

The first two lines set the link mode manual and force one update of the VB variable vfsmList:

 vfsmList.LinkMode = VbLinkManual
 vfsmList.LinkRequest
 vfsm1VI.LinkMode = VbLinkAutomatic

The last line sets link mode automatic for vfsm1VI. From now on this variable is updated
whenever the Virtual Input of the state machine “Vfsm1” changes in the RTDB.

A destination application also can change the data of an item in the database with a so-called poke
message. The following four VB lines connect the VB variable vfsm1Cmd to an RTDB item
object “Vfsm1Cmd” and set it to the value “On”:
 vfsm1Cmd.LinkTopic = "VS|IL"
 vfsm1Cmd.LinkItem = "Vfsm1Cmd.Val"
 vfsm1Cmd = "On"
 vfsm1Cmd.LinkPoke

Data Types
The RTDBWin application supports only the text format (CF_TEXT). So, all RTDB formats are
represented as strings. For instance, “1.23e-45” stands for a floating number.

C H A P T E R 6

Internationalization
Support

Text properties (Alarm Text and Data Units) can be set as plain text or as string constants. A string
constant is a Windows concept supported in VisualC++7. In the project resource there may be a
String Table like this:

In this string table all strings used in a project of the VFSM system with the RTDB are entered. Of
course the VC++ project has to be rebuilt every time the String Table is changed. VC++ produces
a file resource.h. This file contains the references to the particular strings like:

#define IDS_TOOHIGH 61204
#define IDS_TOOLOW 61205
#define IDS_OUTBAND 61206
#define IDS_ENUM 61207

The file resource.h has to be copied to the stateWORKS application configuration directory
(the same that contains the configuration file *.swd). The IDS_xx identifiers are used instead of
the texts as for instance in the following stateWORKS project:

There can be several string tables for different languages. Changing the workstation’s language
changes the string table and so the strings used by stateWORKS.

For the VFSM system with RTDB running under a non-Windows operating system (especially
UNIX-like) the string constant are taken from a stringres.src file which has to be situated
together with the resource.h file in the application configuration directory (with the *swd
file). The stringres.src and resource.h files are prepared using a translation program
StringRes.exe which can be found in the stateWORKS Studio development environment. The
translation program generates the stringres.src and resource.h files using as input
strings defined in a text file StringFile.txt. For the above example, the content of the
StringFile.txt file would be:

7 RTDB for other applications or OS may not allow string constants.

56 Internationalization Support

IDS_TOOHIGH Val. Is too high
IDS_TOOLOW Val. Is too low
IDS_OUTBAND Limits
IDS_ENUM {,,Two,Three,,,Six}

P A R T 2

The VFSM System
Class Library
Reference

: VFSM System Class Library Reference

: Declarations

C H A P T E R 7

VFSM System Class
Library Reference

class Citem
The CItem class is the superclass of all database objects. It contains all the data and methods
applying to all objects, such as object -name and -value with the methods for the client/server
communication. The item value depends on the actual derived item type. For instance, for a DI the
value represents the status of the signal line, for a Vfsm it is the state.

#include <vsitem.h>

Runtime Virtual Public Members
SetValue Sets the CItem object's internal value.
ResetValue Resets a CItem internal value (typically used for virtual inputs).
GetData Returns the data value of CItem types that performs a data flow

(e.g. C_NI).
GetUnitTypeName Used by C_VFSM and C_UNIT item types.
GetValue Returns the internal value of a CItem object.
GetName Returns the CItem object's name.
GetType Gets the type of the item as an enumeration (e.g. IT_VFSM).
GetTypeName Gets the type of the item as a string (e.g. "VFSM").
AddDependent Adds an item as dependent of another.

General Static Members
GetItemType Gets the enumeration of an item type in string representation.
GetItemTypeName Gets the string representation of an item type in enumeration.
GetAttrName Gets the string representation of an attribute specification.
GetAttr Gets the enumeration of an attribute specification in string

representation.

60 VFSM System Class Library Reference

Member Functions

CItem::SetValue

virtual void SetValue (int nVal);
nVal Value to set to item internal value.

Remarks This function is called by other items, by IO-Handlers and by user written output functions to
set the item object's specific value. Remark: the kind of value depends on the type of item
(see the virtual function of the derived classes). Here, the function sets the items internal
value.

See Also C_xxx::SetValue

CItem::GetValue
virtual int GetValue (void);

Remarks This function is typically used internally to get the item objects internal value. The meaning
of the value depends on the type of item (see the virtual function of the derived classes). In
CItem types this value has no practical meaning.

Return Value Item objects internal value (the items's state).
See Also C_xxx::GetValue

CItem::GetName
CString* GetName (void);

Remarks Gets the name (the key to) of the item object.
Return Value Pointer to a string object with the item object's name.

CItem::GetData
virtual CUniversal* GetData (void);

Remarks Dummy function. Gets a pointer to the universal data object which is always a long integer.
Return Value Pointer to the universal data object with value (long integer).
See Also CUniversal, C_DAT:: GetData

VFSM System Class Library Reference 61

CItem::GetType
e_ItemTypes GetType (void);

Remarks Returns the type of the appropriate item in a form of an enumeration.

CItem::GetTypeName
CString GetTypeName (void);

Remarks Returns the type of the appropriate item in a form of a string.

CItem::GetItemType
e_ItemTypes GetItemType (CString &stType);

stType String object representation.
Remarks Is a static method of CItem. It returns the enumeration of the item types from the string

representation.
Return Value Enumeration representation, or default value (IT_Item) if not available (see the enumeration

in section on page).

CItem::GetItemTypeName
CString GetItemTypeName (e_ItemTypes eType);

eType Enumeration representation of item type.
Remarks Is a static method of CItem. It returns the string representation from the enumeration of the

item types. When called the first time it initializes the appropriate text arrays.
Return Value String representation of the item type.

CItem::GetAttrNameGetAttrName
static CString GetAttrName (e_ItemAttributes IAtt);

IAtt Enumeration of the item objects attributes.
Remarks Is a static method of CItem. It returns the name of the appropriate attribute, e.g. "PeV".
Return Value String representation of the attribute.

62 VFSM System Class Library Reference

CItem::GetAttr
e_ItemAttributes GetAttr (CString &stAttrKey);

stAttrKey One of the allowed attributes (e.g. "PeV").
Remarks Is a static method of CItem. It returns the enumeration that matches with attribute key.
Return Value Enumeration of the attributes if allowed, else out range.

CItem::AddDependent
void AddDependent (CItem* pItem);

pItem Pointer to the item that will be dependent.
Remarks Add pItem to the dependent list of the current item. If the current item changes the pItem’s

method ChangedOn().
See Also CIO_Handler::ChangedOn

CItem::Disconnect
virtual void Disconnect (void);

Remarks Typically used by a IO-Handler object when it is destroyed.

VFSM System Class Library Reference 63

class C_AL : public CItem
C_AL is the class of alarm objects. It contains all the data and methods to handle the alarm aspects
of an application. The virtual method SetValue(), typically called via a Vfsm’s virtual output or a
user written output action, sets one of the commands to the alarm object (see e_ALA_Cmds in
VSYSTYP.H). The internal value of the item represents the state of the alarm (see
e_ALA_States in VSYSTYP.H). An alarm object acts as a simple finite state machine. The
state table is presented here in a form of a transition matrix (the preambles "AC_" and "AS_" are
omitted):

from \ to NONE STAYING COMING ACKN. COM_GO GOING
NONE Stay / I Com / I
STAYING Ack / R
COMING Ack / R Go
ACKN. Go / I
COM_GO Com / RI Ack / RI
GOING Ack / R Com / RI

Commands: Com=Coming, Go=Going, Stay=Staying, Ack=Acknowledge

Actions: R=Remove from.., I=Insert to.., RI=Remain in Alarm Queue but move to the head

Alarm Text
The text property of the alarm objects can contain:

• A plain alarm text directly set to the alarm message.

• Several string constants (see the chapter Internationalization).

• References to data objects (Dat, Ni, No, Par, Udc).

When an alarm enters the state COMMING or STAYING the value of the referenced object is
read and copied together with its unit (not if data object is an enumeration) into the actual alarm
text. This can lead to more clear alarm texts like: “Val. Is too high: 6.83V. Limit is:
1V(AlarmHigh)”

Example The AL property’s entry Text (set via stateWORKS Studio) could contain:
IDS_TOOHIGH %NiVoltage IDS_OUTBAND %ParLimitHigh (AlarmHigh)

The above alarm text example shows several concepts:

– Text can contain several string constants: IDS_TOOHIGH and IDS_OUTBAND. If an IDS_xx
identifier is not in the resource a warning is entered in the sulog.txt file and IDS_xx itself is
copied to the alarm text.

– Text can contain several references to data objects: %NiVoltage and %ParLimitHigh.

– Data references start with the % character. Of course the data object with name NiVoltage has to
be in the stateWORKS project. Otherwise the name itself is displayed in the alarm text and a
warning is entered to the sulog.txt file.

– String constants and references can be mixed with plain text, see “(AlarmHigh)”.

– String constants and references must not contain spaces. Spaces are used as separators.

Remark Decoding of string constants: see the chapter Internationalization Support.

64 VFSM System Class Library Reference

Alarm Queue
Active alarms are linked in a queue, the latest at the head. The head is represented by a pseudo
alarm item "AL". If a client advises one of the attributes of "AL", it gets the data of the alarm at
the head of the queue. If an alarm disappears (becomes inactive) it is removed from the queue. If
this alarm was at the head, the data of the next one in the queue is sent under the name "AL" to the
clients. So a client that requests to be advised of the item "AL" always gets the data of the latest
active alarm. The alarm queue is a single linked list with the element "AL" as a root.

Alarm Event
According the alarms object’s category property the alarm events can be sent to the AlarmLog.txt
file in the following form (taken from an example):
G:\StateWORKS\Projects\Examples\RegulatorSH\Conf\RegulatorSH.swd
started at: 06-Aug-04 18:25:57
ERROR 06-Aug-04 18:26:39 - Reg2:Al:Pressure - STAYING - Reg2:
Pressure regulating error (247.061mBar)
WARNING 06-Aug-04 18:26:35 - Reg1:Al:Motor - STAYING - Reg1:
Motor too hot
INFO 06-Aug-04 18:51:54 – Reg2:Al:Pressure – NONE
Terminated at: 06-Aug-04 18:27:59

The AlarmLog.txt file is created in the Config directory and the alarms are appended to it at any
time.

The alarm log knows three alarm severity levels: Error, Warning and Information.

The alarm system of the stateWORKS realtime database looks for an EP type parameter
AL_CatKeyPar. It can have a value from 0..7 with a binary meaning.

1 Error to AlarmLog
2 Warning to AlarmLog
4 Information to AlarmLog
For instance if AL_CatKeyPar is 7 all three types of alarms are written into the alarm log file.
This applies to all alarms in the stateWORKS realtime database. If the realtime database does not
find the AL_CatKeyPar all types of alarms are written into the alarm log file.
Alarm Category
Every individual alarm instance has the Category-Property that determines whether its events are
sent to the alarm log.

Category COMMING, STAYING GOING, NONE
1 Error to AlarmLog Information to AlarmLog
2 Warning to AlarmLog Information to AlarmLog
4 Information to AlarmLog Information to AlarmLog
Other Not sent to AlarmLog

#include "vsala.h"

Runtime Virtual Public Members
SetValue Sets the C_AL object's command value.
GetValue Returns the state of a C_AL object.

Member Functions

C_AL::SetValue
virtual void SetValue (int nVal);

VFSM System Class Library Reference 65

nVal C_AL command casted to e_ALA_Cmds (see VSYSTYP.H).
Remarks Can cause a change of C_AL's state (internal value) and so the advise of other items or

clients.

C_AL::GetValue
virtual int GetValue (void);

Remarks Returns the item object's internal value. Here this is the state of the C_AL object cast to
e_ALA_States (see VSYSTYP.H).

C_ALA::GetAlarmText
CString* GetAlarmText (void);

Remarks Returns the current alarm text. String constants or references are connected if set via
configuration file.

C_ALA::SetCategory
void SetCategory (CString stCat);

Remarks In a running system this has no influence whether the events are sent to the AlarmLog or not.

C_ALA::GetCategory
CString* GetCategory (void);

Remarks Returns the current category

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R Item's state as number, see e_ALA_States
State Name R Item's state as text string
Category R Text defined in stateWORKS Studio/AL-Properties
Text R Alarmtext defined in stateWORKS Studio/AL-Properties
Time R Time and date when alarm's state was entered
List R State, Time, category and text in one string, separated with

<LF>
Acknowledge W Empty message, command to AL state machine

Remarks Category and Text come via the Configuration File from the stateWORKS Studio/AL-
Properties to the alarm item object. The VFSM System does nothing with them.
They are just provided for display purposes.

66 VFSM System Class Library Reference

class C_CMD : public CItem
Commands are objects holding typically the connection between a (master) Vfsm or a User
Interface (Client) and another Vfsm (slave). Commands contain a feature called “service mode”
that allows (via a client) for overriding the value set by the (master) Vfsm.

The Peripheral Value PeV is set typically by a (master) Vfsm via the method SetValue() or via a
Client/Server access to the attribute "PeV". If the Service Mode is OFF (SvM = false), the
Peripheral Value is passed to the C_CMD item object's internal value Val and from here typically
to a (slave) Vfsm. If the Service Mode is ON, the Service Value SvV is passed to the internal value
Val.

Command Names
A C_CMD item object can be connected to a Vfsm’s IO-Description File from where it takes the
C-Block as its command names:
C # Name - Cmd Names - Value
 1 Off 7
 2 CmdX 10
 3 CmdY 11
 4 CmdZ 12

A C_CMD delivers then as the attribute "PeV" and "SvV" the corresponding command name
(without command names they return the numbers). The attribute "Lst" delivers a list of the
command names with the appropriate numbers, as shown in the following example (\n is the
<NL> character 0x0A):

"7 Off\n10 CmdX\n11 CmdY\n12 nCmdZ\n"

#include "vscmd.h"

Runtime Virtual Public Members
SetValue Sets the C_CMD object's Peripheral Value.
GetValue Returns the internal Val value of a C_CMD item object.

SvMSvV

PeV Val

VFSM System Class Library Reference 67

Member Functions

C_CMD::SetValue
virtual void SetValue (int nVal);

nVal Numerical value of the command.
Remarks The Peripheral Value is set directly; the internal value depends on the Service Mode switch.

C_CMD::GetValue
virtual int GetValue (void);

Remarks Gets the internal value of the item. This means here the command value of the C_CMD as it
is sent to the (slave) Vfsm.

Return Value The command as number.

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R Internal value as number
Service Mode X 0 -> serv.mode OFF, 1 -> ON
Service Value X As numbers or as text, see according IOD-file.
Peripheral Value X As numbers or as text, see according IOD-file.
Type Name R Name of the according IOD-file, or empty if none
List R Numbers and names as a list

Remarks The type name (the IOD-file name) comes via the Configuration File from the stateWORKS
Studio/CMD-Properties to the command item object.

68 VFSM System Class Library Reference

class C_CNT : public CItem
C_CNT is the class of counter objects. It contains all the data and methods to handle the counter
aspect of an application. The virtual method SetValue() sets one of the commands to the counter
object (see e_CNT_Cmds in VSYSTYP.H). The C_CNT item's internal value represents the state
of the counter (see e_CNT_States in VSYSTYP.H). A counter object acts as a simple finite state
machine. The state table is presented here in a form of a transition matrix (the preambles "CC_"
and "CS_" are omitted):

from \ to RESET STOP RUN OVER OVERSTOP
RESET Start,

ResetStart
STOP Start,

ResetStart
RUN Reset Stop ResetStart “expiration”
OVER Reset ResetStart Stop
OVERSTOP Reset ResetStart Start

“Expiration” happens when the Counter Value becomes equal to the Counter Constant.

In any state the command CC_NewCountConst is allowed. It can lead in the state CS_RUN to an
expiration of the counter. The commands CC_IncCounter and CC_DecCounter are possible in the
states CS_RUN and CS_OVER. CC_IncCounter in CS_RUN can lead to an expiration of the
counter. The state remains CS_OVER even if CC_DecCounter is issued. The commands
CC_Reset and CC_ResetStart set the counter register to zero. Instances of C_CNT are used
typically to count system internal events like for instance certain state changes of a Vfsm. C_CNT
is also the superclass of the timer- and event-counter-items.

#include "vscnt.h"

Runtime Virtual Public Members
SetValue Sets the C_CNT object's command.
GetValue Returns the state of a C_CNT object.
SetCountConst Sets the C_CNT's counter constant.
GetCountConst Gets the C_CNT's counter constant.
GetCountRegister Gets the C_CNT's counter register.

Member Functions

C_CNT::SetValue
virtual void SetValue (int nVal);

nVal C_CNT command casted to e_CNT_Cmds.
Remarks Sets the C_CNT object's command. This can cause a change of C_CNT's state and so the

advise of other items or client/servers.

C_CNT::GetValue
virtual int GetValue (void);

Remarks Returns the item object's internal value. Here, this is the state of the C_CNT object casted to
e_CNT_States (see VSYSTYP.H).

VFSM System Class Library Reference 69

C_CNT::SetCountConst
virtual void SetCountConst (int nCountConst);

nCountConst Count Constant (or Limit).
Remarks Sets a C_CNT item object's Counter Constant value.

C_CNT::GetCountConst
virtual int GetCountConst(void);

Remarks Returns the C_CNT item object's Counter Constant value.
Return Value Counter Constant value.

C_CNT::GetCountRegister
virtual int GetCountRegister(void);

Remarks Returns the C_CNT item object's Counter Register value.
Return Value Counter Register value.

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R Counter's state as number see e_CNT_States
Value W Counter's commands as number see e_CNT_Cmds
State Name R Counter's state as a text string
Count Constant X as an (integer) number
Count Register R as an (integer) number

70 VFSM System Class Library Reference

class C_DAT : public CItem
C_DAT items are objects holding values typically of physical types like parameters or numerical
values. A C_DAT item has the attributes: Data Value, Data Format and Physical Unit. Instances of
C_DAT items can be used as objects too but typically C_DAT just serves as superclass of the
PAR, NI, NO or UDC item objects.

A C_DAT item object acts as a simple finite state machine. The state table is presented here in a
form of a transition matrix (the preambles "SC_" and "SS_" are omitted):

from \ to OFF INIT UNDEF CHANGED DEF
OFF - on - - -
INIT off - - “new data” -
UNDEF - - - “new data” -
CHANGED off - - ”new data” set
DEF off - - - -

“New data” happens when the data changes.

Remarks The UNDEF state is used only for PAR items whose Category attribute equals PG_PP or
PG_PP_Coded.

Data Value
The CItem's internal value represents the state of the data (see e_DATA_States in VSYSTYP.H).
The state of a CItem (here a C_DAT) object generally represents the control flow (see the state
machine transition table above) in the control system, the data value - the data flow.

Data Format
The format determines the numerical representation of the C_DAT's data value. Numerical values
are always stored in 32Bit but nevertheless values are rounded or limited to the resolution of the
appropriate format. The following list shows valid formats and their specifications (the syntax and
meaning is almost C-like):

Format Description
bool two values: true and false
char -128..+127 (8Bit signed)
unsigned char 0..255 (8Bit unsigned)
unsigned short int 0..65535 (16Bit unsigned)
long -2G..+2G (32Bit signed)
float 32Bit floating point, representation most convenient (E or F)
%e0 .. %e8 32Bit floating point, representation exponent, e.g. "3.5e-12"
%f0 .. %f8 32Bit floating point, representation fixpoint, e.g. "1.2345678"
string a (almost) unlimited text string

Remarks %En and %Fn are floating point values. The number n in 0..8 range specifies the number of
digits when sent to a client. It is not the internal representation; this is always the full range.

Unit
Unit is a free selectable string representing the physical like "mA" or "sec". The string is not used
internally. It just serves the client to display the data appropriately.

VFSM System Class Library Reference 71

Enumeration
Data objects have a unit attribute intended to add the physical unit of the represented data. This
unit can also be used to define the data as a set of enumeration. In the stateWORKS Studio enter
the following string to the Unit-Property of a data object (Dat, Ni, No, Par, Udc):

The brackets are important; they declare the text inside as an enumeration definition instead as a
real unit text.

 Data Value ..-1 0 1 2 3 4 5 6 7 8..
 Display ..-1 Null One only Two 3 4 5 Sex Crime 8..
Values entered as strings are analyzed. If an enumeration text is recognized it is converted to the
according numerical value and set to the internal data value. Valid numbers are also accepted.

Remarks Units can be replaced by string constants like, e.g. IDS_ENUM.
Comma is used as separator. No text between commas means no text replacement for the
number. Start with a comma {,One,Two} if zero is not used.
The value ranges are positive integers including zero.
The Format-Property may be anything (but a string). Float values are rounded down to
integers.
Data Values without an assigned enumeration value are displayed in the original format:
Data Value -1.5 0.1 1.1 2.99 3.01 1.23e45
Display -1.5 Null One Two 3.01 1.23e45

Use of Enumeration Class
Enumerations are typically used in context with Cmd objects. Enumerations can also be used
elsewhere, for instance in an IO-Handler.

Example CString stName("MyEnum");
CString stEnum("{Null,One,only Two,,,,Sex,Crime}");
CEnumeration* pEnum;
pEnum = m_pEnumList->Lookup(stName, stEnum);

Remark Explanation of enumeration: see the above chapter.

72 VFSM System Class Library Reference

#include "vsdata.h"

Runtime Public Members
GetValue Returns the state of a C_DAT object.
GetFormat Gets the format specification in enumeration representation.
GetUnit Gets the string containing the C_DAT object unit.
SetData Sets the data value of a C_DAT object.
GetData Returns the universal data object.
bGetData Returns the value of a C_DAT object as boolean.
chGetData Returns the value of a C_DAT object as character.
uchGetData Returns the value of a C_DAT object as unsigned char.
nGetData Returns the value of a C_DAT object as short integer.
unGetData Returns the value of a C_DAT object as unsigned short integer.
lGetData Returns the value of a C_DAT object as long.
fGetData Returns the value of a C_DAT object as float.
pstGetData Returns the pointer of a C_DAT if it is a string.
stGetData Returns the string of a C_DAT if it is a string.

Member Functions

C_DAT::GetValue
int GetValue (void);

Remarks Gets the internal value, the state of the C_DAT item. This values can be one of the enum
e_DATA_States (DS_OFF, DS_UNDEF, DS_DEF, DS_CHANGED, DS_INIT, DS_SET).

Return Value C_DAT state as a number (see e_DATA_States is SYSTYP.H).

C_DAT::GetFormat
e_DATA_Formats GetFormat (void);

Remarks Gets the format of the data in enumeration representation (see VSYSTYP.H).
Return Value Data format as enumeration e_DATA_Formats.

C_DAT::GetUnit
CString* GetUnit (void);

Remarks Gets the physical unit of the C_DAT object as a string.
Return Value Pointer to a string object containing the C_DAT's Physical Unit.

VFSM System Class Library Reference 73

C_DAT::SetData
void SetData (bool bData);

void SetData (char nData);

void SetData (unsigned char nData);

void SetData (short nData);

void SetData (unsigned short nData);

void SetData (long lData);

void SetData (float fData);

void SetData (CStdString& stData);

void SetData (CUniversal& Data);

n,l,f,st,Data Input value in appropriate data format.
Remarks The value is transformed and possibly limited to the C_DAT objects own format. Changes the

C_DAT's status to DS_CHANGED and of course the data value to the specified value.

C_DAT::GetData
CUniversal* GetData (void);

Remarks Gets a pointer to the universal data object. Sets the state of the C_DAT object to DS_DEF if
it was DS_CHANGED before. This signals that the data was read (consumed) at least once
after setting to a new value.

Return Value A pointer to a universal data object CUniversal.
See Also CUniversal

C_DAT::GetData
virtual bool GetData (CString* pstVal, r_Universal data);

pstVal Pointer to the result string, at least "".
Data Input value in appropriate data format.

Remarks Represents in pstVal data value, Format is internally specified.
Return Value true -> if ok, else false.

74 VFSM System Class Library Reference

C_DAT::xGetData
bool bGetData (void);

char chGetData (void);

unsigned char uchGetData (void);

short int nGetData (void);

unsigned short unGetData (void);

long lGetData (void);

float fGetData (void);

CString* pstGetData (void);

CString stGetData (void);

Remarks Returns the C_DAT object's value in the appropriate format. The value is transformed and
possibly limited. Sets the state of the C_DAT object to DS_DEF, if it was DS_CHANGED
before. This signals that the data was read (consumed) at least once after setting to a new
value.

Return Value A value in appropriate format.

C_DAT::Display
bool Display (CString* pstVal);

pstVal Output parameter; string representation of the data value.
Return Value true if value is available.
Remarks String representation is copied to pstVal. Possibly enumerations are displayed.

C_DAT::DisplayWithUnit
bool DisplayWithUnit (CString* pstVal);

pstVal String representation of the data value with unit attached, e.g. 6.83V
Return Value true if value is available.
Remarks String representation is copied to pstVal. Possibly enumerations are displayed, and in that

case no unit is displayed.

C_DAT::Set
virtual bool Set(CString* pstVal);

pstVal String representation of the data value to be set.
Return Value true if data value has changed, else false.
Remarks Puts the string representation of a value to its appropriate format. Applies the limits format

according to the value. Tests whether the value has changed. In case of a format error lets the
data value unchanged, but sets changed true nevertheless. If it is an enumeration, tests for
that.

C_DAT::SetUnit
void SetUnit (CString stUnit);

stUnit new unit.
Remarks Overwrites the unit of the data item. No enumeration possible.

VFSM System Class Library Reference 75

C_DAT::SetUnitText
CString GetUnitText (CString stUnit);

stUnit Unit text or string constant.
Remarks If stUnit is a string constant IDS_xxx takes the corresponding contents from the resource file,

or else takes the original.
Return Value The original stUnit or the content of the string constant.

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R Data object's state as number see e_DATA_States
State Name R Data object's state as text string
Format R Data object's format as string
Physical Unit R Data object's unit as string
Data Value R Data object's value as string according its own format
Data Value W Set value in any format as a string

Remarks Format and PhysicalUnit come via the Configuration File from the stateWORKS
Studio/DAT-Properties to the data item object. PhysicalUnit is not used by the VFSM
System. Format is used to format the value string sent to the destination application.
Data set (poked) by a destination application can be in any valid format. If the format isn't
valid the data value is not changed and the old value is sent as update.

VFSM System Class Library Reference 77

class C_DI : public CItem
A C_DI item is an object holding the connection to a real digital input signal. It is set to 0 or 1
(false, true) with its own method SetValue() by the IO-Handler. C_DIs contain a feature called
service mode that allows (via a client) the value set by the IO-Handler to be overridden:

If the Service Mode switch SvM is false, the Peripheral Value PeV is connected to the C_DI item's
value Val. This value is also called the Control Value, because it is the value seen by the state
machine (Vfsm). If the Service Mode switch is true, the service mode is ON and the Service Value
SvV is connected to the C_DI item's value Val i.e. the DI is disconnected from its peripherals. The
Peripheral Value is set by the method SetValue() that is called typically by an IO-Handler object.
The method GetValue() returns the item's value Val. The Service Mode switch and the Service
Value are set by the clients (see the C_DI item's attributes "SvV" and "SvM").

Invert
DI objects have the Invert property (set via the stateWORKS Studio). This is typically used in
case of reversed logic. For instance a DI PressureTooHigh may be wired as a low voltage
level for active to detect a wire break. If the invert property is set then the signal appears in the
control system with the correct logical state.

#include <vsdi.h>

Runtime Virtual Public Members
SetValue Sets the C_DI object's peripheral value.
GetValue Returns the internal value of the C_DI item.
GetInvert Returns the value of the Invert property.

SvMSvV

PeV Val

IO-Handler

Invert

78 VFSM System Class Library Reference

Member Functions

C_DI::SetValue
void SetValue (int nValue);

nValue State of the Digital Input. 0-> false=Low, not 0->true=High.
Remarks It is typically called by an IO-Handler object to set the state of the appropriate digital input.

The Peripheral Value is set directly. The internal value depends on the Service Mode switch.

C_DI::GetValue
int GetValue (void);

Remarks Gets the C_DI item's internal value. Here, this means the Control Value of the C_DI.
Return Value C_DI Control Value. State of the digital input: false=Low=0, true=High=1.If the Service

Mode switch is set the value of the Service Value is returned.

C_DI::GetInvert
bool GetInvert (void);

Return Value The member variable.

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R DI object's state as number 0 or 1
Service Mode X 0->service mode in OFF, 1->ON
Sevice Value X 0->false/Low, 1->true/High
Peripheral Value R value set by the IO-Handler (0 or 1)

VFSM System Class Library Reference 79

class C_DO : public CItem
A C_DO item is an object holding the connection to a real digital output signal. It is set to 0 or 1
(false, true) with its own method SetValue() by a Vfsm’s output action or a user written output
function. C_DOs contain a feature called service mode that allows (via a client) the value set by
the control system to be overridden.

If the Service Mode switch SvM is false, the item's internal value Val is connected to the C_DO's
Peripheral Value PeV. If the Service Mode switch is true, the service mode is ON and the Service
Value SvV is connected to the Peripheral Value PeV i.e. the digital output is disconnected from its
control (state machine). The internal value Val is set by the method SetValue(). The method
GetValue() returns the item's value Val. The Service Mode switch and the Service Value are set
by the clients (see the C_DO item's attributes "SvV" and "SvM").

Invert
DIOobjects have the Invert property (set via stateWORKS Studio). This is typically used in case
of reversed logic.

If the Peripheral Value changes, the IO-Handler’s method SetOutput() is called to set the value to
the according hardware. The IO-Handler is connected to the C_DO item with its method
Connect().

#include "vsdo.h"

Initialization - Virtual Public Members
Connect Connects the C_DO item to an IO-Handler object.
Disconnect Disconnects the C_DO item from an IO-Handler object.

Runtime Virtual Public Members
SetValue Sets the C_DO objects internal value.
GetValue Returns the internal value of the C_DO item.
GetInvert Returns the value of the Invert property.

SvMSvV

Val PeV

IO-Handler

Invert

80 VFSM System Class Library Reference

Member Functions

C_DO::Connect
void Connect (CIO_Handler* pIOHandler, int nChannel);

pIOHandler Pointer to the IO-Handler object.
nChannel Number within the array of DOs.

Remarks Typically used by an IO-Handler object to give the C_DO item access to itself. The C_DO
item calls during runtime the IO-Handler objects method SetOutput() to set its value to the
peripherals.

C_DO::Disconnect
virtual void Disconnect (void);

Remarks Typically used by the IO-Handler object when it is destroyed. Sets the pointer m_pIOHandler
to NULL, so that a possible access to the IO-Handler can be avoided (m_pIOHandler ->
(member) set to NULL)

C_DO::SetValue
void SetValue (int nValue);

nValue State of the Digital Output false=Low=0, true=High=1.
Remarks Sets the internal value of the C_DO item (Val). If the Service Mode is off nValue is copied

directly to the IO-Handler via the appropriate IO-Handler's method SetOutput() (if set with
Connect()).

See Also CIO_Handler:: SetOutput

C_DO::GetValue
int GetValue (void);

Remarks Gets the C_DO item's internal value.
Return Value C_DO Control Value. State of the digital output: false=Low=0, true=High=1.

C_DO::GetInvert
bool GetInvert (void);

Return Value The member variable.

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R DO object's state as number 0 or 1
Service Mode X 0->service mode in OFF, 1->ON
Sevice Value X 0->false/Low, 1->true/High
Peripheral Value R value set to the IO-Handler (0 or 1)

82 VFSM System Class Library Reference

class C_ECNT : public C_CNT
C_ECNT is the class of event counter item objects. It contains all the data and methods to handle
this aspect of an application. C_ECNT is a subclass of the item type C_CNT (Counter). It inherits
the counter's state machine and adds the aspect of the event count. It typically counts the events on
an item object, for instance the C_DI. Every time the C_DI gets the configured trigger value (1 for
true, 0 for false) it increments its counter register. If an event is not that concrete as a digital signal,
it is possible to put a SWIP item between, for example, an analog input (NI) and the event counter.
The trigger value is then set, for example, to HIGH (such as the value >4). So every time the NI
passes the high limit, the counter is incremented.

#include "vsecnt.h"

Remarks This class has the same interface as C_CNT.

VFSM System Class Library Reference 83

class CItemList
CItemList is the heart of the database. It contains all the items that are created according to the
control system designer's configuration. It is a dynamic list with an access key, it grows during
startup but it remains constant after that. The access key is the item's name. The name length is
unlimited. Requests from the server always go to this list. The connections between the items are
established once via this list during startup (afterwards communication goes directly via pointers).
CItemList reads the Configuration File during the startup create phase.

#include "vsil.h"

Initialization - Public Members
Lookup Gets the pointer to an item identified by an access key.
GetFirst Looks for the first item of the specified item type.
GetNext Looks for the next item of the specified item type.
GetItemNumb Gets the number of specified items in the database.

Member Functions

CItemList::Lookup
CItem* Lookup (CString stKey);

stKey Access key to the item object.
Remarks Gets a pointer to the item object addressed by key. If there is no item under the specified

name, a NULL pointer is returned.
Return Value A pointer of the superclass type CItem.

CItemList::GetFirst
CItem* GetFirst (e_ItemTypes ItemType, POSITION& pos);

ItemType Select special item type (see VSYSTYP.H).
pos Iteration variable.

Remarks Looks for the first item of the specified item type. Used together with GetNext() to iterate
through all of specified item types in the database.

Return Value Pointer to the item object, NULL if not available.
See Also CitemList::GetNext
Example CItemList* pIL = &(pDoc->m_VfsmSystem.m_ItemList);

CItem* pItem;
C_UNIT* pUnit;
POSITION pos;
 pItem = pIL->GetFirst (IT_UNIT, pos);
 while (pItem != NULL)
 {
 pUnit = (C_UNIT*)pItem;
 // do something with the pUnit object
 pItem = pIL->GetNext (IT_UNIT, pos);
 }

84 VFSM System Class Library Reference

CItemList::GetNext
CItem* GetNext (e_ItemTypes ItemType, POSITION& pos);

ItemType Select special item type (see VSYSTYP.H).
pos Iteration variable.

Remarks Looks for the next item of the specified item type ItemType. Used together with GetFirst() to
iterate through all of a specified item types in the database.

Return Value Pointer to the item object, NULL if there are no more items.
See Also CItemList::GetFirst
Example see GetFirst

CItemList::GetItemNumb
int GetItemNumb (e_ItemTypes ItemType);

ItemType Select special item type (see VSYSTYP.H).
Remarks Returns the number of the specified item in the database.
Return Value Number of items in the database.

VFSM System Class Library Reference 85

class CIO_Handler
The class CIO_Handler is a virtual class that is just used as superclass for the user written IO-
Handlers. It holds the connection to the database C_UNIT item object that holds the connection to
the physical database items like C_DI, C_DO, C_NI or C_NO. User written IO-Handlers inherit
the connection to the C_UNIT items and to the methods used by output type database items like
C_DO and C_NO.

#include "vsiou.h"

Construction/Destruction - Public Members
CIO_Handler Creates a CIO_Handler object.
~CIO_Handler Destroys a CIO_Handler object.

Initialization - Virtual Public Members
Create Installs the connection to its C_UNIT item.
Connect Connects the associated output items to its output function.

Initialization - Public Members
GetUnitName Gets the name of the cooperating C_UNIT item.
GetUnitTypeName Gets the type of the cooperating C_UNIT item.
GetPhysicalAddress Gets the physical address of the cooperating C_UNIT item.
GetCommPort Gets the communication port of the cooperating C_UNIT item.

Runtime Virtual Public Members
SetOutput Output function used by the associated output items.
GetNumbAssItem Gets the number of associated items.
GetAssItem Gets the indexed associated item.
pUnit Gets a pointer to the cooperating UNIT item.
pItemList Gets a pointer to the (global) item list.
ChangedOn Item of dependency has changed

Member Functions

CIO_Handler::CIO_Handler
CIO_Handler (void);

Remarks Constructor.

CIO_Handler::~CIO_Handler;
~CIO_Handler (void);

Remarks Destructor.
Remarks The constructor and destructor of this class are listed here as users have to use them while

writing IO-Handlers.

CIO_Handler::Create
virtual bool CIO_Handler::Create (C_UNIT* pUnit);

86 VFSM System Class Library Reference

pUnit Pointer to the associated C_UNIT item object.
Remarks Stores the pointer pUnit for later use and gets and stores the pointer to the associated item list

of this C_UNIT item.
Return Value true if succeeded.

CIO_Handler::Connect
virtual void Connect(void);

Remarks Typically used by the subclasses to connect the associated output items like C_DOs or
C_NOs to themselves, so that they can set their output values to appropriate output hardware.

CIO_Handler::GetUnitName
CString GetUnitName (void);

Remarks Returns the cooperating C_UNIT item's name if it exists, otherwise "".
Return Value String with name of C_UNIT item.

CIO_Handler::GetUnitTypeName
CString GetUnitTypeName (void);

Remarks Returns a string object with the cooperating C_UNIT item's type if it exists, otherwise "".
Return Value String with name of the C_UNIT item's type.

CIO_Handler::GetPhysicalAddress
int GetPhysicalAddress (void);

Remarks Returns the physical address of this IO-Handler. It comes from the Configuration File via the
cooperating C_UNIT item.

Return Value Number with the physical address.

CIO_Handler::GetCommPort
int GetCommPort (void);

Remarks Returns the communication port number of this IO-Handler. It comes from the Configuration
File via the cooperating C_UNIT item.

Return Value String with the communication port name.

CIO_Handler::SetOutput
virtual void SetOutput (bool bVal, int nChan);

virtual void SetOutput (short int nVal, int nChan);

virtual void SetOutput (long lVal, int nChan);

VFSM System Class Library Reference 87

virtual void SetOutput (float fVal, int nChan);

virtual void SetOutput (int nChan);

b/n/l/fVal Value of the output item to set to the output hardware in appropriate format.
nChan Sets the output value to this channel number.

Remarks Typically used by output items like C_DO and C_NO to set their values via this IO-Handler
to a physical output.
The last SetOutput() method triggers only a channel – the data must be supplied in the IO-
Handler (got from RTDB, calculated, etc., must be used with of UseSimpleGetOutput(), see
the description of the C_NO class).

See Also C_DO::SetValue, C_NO::SetData

CIO_Handler::GetNumbAssItem
int GetNumbAssItem (void);

Remarks Returns the number of associated items of the cooperating C_UNIT item. It is the maximum
possible number. It does not mean that these items are really existent but there are slots for
them.

Return Value Possible number of associated items of the cooperating UNIT item.

CIO_Handler::GetAssItem
CItem* GetAssItem (int nObjID);

nObjID Index to the associated item.
Remarks Returns the pointer to the indexed associated item. This pointer can be NULL if there is no

item or if the index is outside the number of items of that UNIT.
Return Value Pointer to a CItem object.

CIO_Handler::pUnit
C_UNIT* pUnit (void);

Remarks Returns the pointer to the cooperating C_UNIT item.
Return Value Pointer to the cooperating UNIT item.

CIO_Handler::pItemList
CItemList* pItemList (void);

Return Value Returns the pointer to the (global) item list.

CIO_Handler::ChangedOn
void ChangedOn(CItem* pItem, e_ItemAttributes attr);

pItem Pointer to item that has changed
attr This attribute of pItem has changed (see VSYSTYP.H)

Remarks Is called by the item from which the current item is dependent, to say that it has changed.
See Also CItem::AddDependent

88 VFSM System Class Library Reference

Example void CIO_HandlerExa::Connect(void)
{
CItem* pItem;
pItem = GetAssItem(EXA_B_Cmd);
 if(pItem != NULL)
 {
 if(pItem->GetType() == IT_CMD)
 {
 m_pCmd = (C_CMD*)pItem;
 m_pCmd->AddDependent(m_pUnit);
 }
 }
} /* End of CIO_HandlerExa::Connect */
void CIO_HandlerExa::ChangedOn(CItem* pItem, e_ItemAttributes
attr)
{
 if (pItem == m_pCmd)
 if (attr == IAtt_Value)
 {
 switch (m_pCmd->GetValue())
 {
 case 1: // Load
 Load(m_pPar->stGetData());
 return;
 case 2: // Save
 Save(m_pPar->stGetData());
 return;
 }
 }
} /* End of CIO_HandlerExa::ChangedOn */

VFSM System Class Library Reference 89

class C_NI : public C_DAT
C_NIs are objects derived from the class C_DAT. They are typically used as representation of
hardware devices such as ADCs, Coders or (Hardware) Counters. As the C_Dis, C_NIs are
organized in appropriate IO-Handlers. The state of a C_NI item object corresponds to one of the
C_DAT states such as DS_CHANGED or DS_DEF to signal for instance to a SWIP item object
to check its data value. The method SetInput() is characteristic for C_NIs. It takes a value (e.g. the
output of a 12Bit ADC 0..4091) to transform it, e.g. to a current value (e.g. -200… +200A). It can
scale the input values with several methods that all take the parameters Scale Factor, Offset and
Scale Mode (linear, exp). C_NI adds to the inherited attributes of C_DAT (Data Value, Physical
Unit and Format) the attributes: Scale Factor, Offset, Scale Mode and Limit Low.

Scale Algorithms
C_NI items are capable to transform the raw information from the peripherals to scaled values of
appropriate physical units. The following scaling methods are available (where x -> Input Value
delivered by SetInput(), y -> Data Value, a -> Scale Factor, b -> Offset):

none y = x (the Data Value is passed to the Output Value as is)
Lin y = a*x + b
Exp y = e^(a*x + b)

#include "vsni.h"

Runtime Virtual Public Members
SetInput Sets the C_NI item object's data value via scaling.
GetThreshold Gets threshold value

Member Functions

C_NI::SetInput
void SetInput (int nInp);

void SetInput (unsigned integer nInp);

void SetInput (long lInp);

void SetInput (float fInp);

void SetInput (CString& stInp);

n,w,l,fInp, stInp Input value in appropriate data format.
Remarks Is typically called by an IO-Handler object to pass a value from the peripherals to the C_NI

item. The value is transformed and possibly limited to the appropriate format and scaled using
the scaling method configured. SetInput() changes the C_NI's status to DS_CHANGED and
of course the data value to the specified value.

Warning Do not mix-up with the C_DAT item's virtual method SetData() that goes directly to the data
value without scaling.

C_NI::GetThreshold
Cuniversal* GetThreshold(void);

Remarks Get threshold as a universal data.

90 VFSM System Class Library Reference

Rteurn Value Pointer to the threshold data in the appropriate format.

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R NI object's state as number see e_DATA_States
State Name R NI object's state as text string
Format R NI object's format as string
Physical Unit R NI object's unit as string
Data Value R NI object's value as string according its own format
Scale Factor R Scale factor
Offset R Offset
Scale Mode R Scale mode as string
Limit Low R Threshold value, means: don't update if difference is lower

VFSM System Class Library Reference 91

class C_NO : public C_DAT
C_NOs are objects derived from the class C_DAT. They are typically used as representations of
hardware devices like DACs or numeric output registers. As for the C_DOs, C_NOs are organized
in appropriate IO-Handlers. The state of a C_NO is the one of C_DAT's states like
DS_CHANGED, DS_DEF, DEF_SET or DS_OFF. A C_NO object accepts four commands via
the method SetValue(): DC_Off, DC_On, DC_Set and DC_NewData. These commands are set by
a Vfsm’s virtual output or a user written output function. There are two ways to set a C_NO item's
output value:

• A C_NO item object can be plugged to a parameter (C_PAR item) or a table (C_TAB item)
object containing the data value. With the commands DC_Off and DC_On the output value of
the C_NO item is switched to zero respectively to the PAR or TAB's data value. With this
method a C_NO item can be switched on and off (and via TAB to several data values) just by
a Vfsm’s virtual output.

• The virtual C_DAT method SetData() sets the C_NO item's Data Value directly. This method
is typically used by user written output functions, if the previous method is too limited.

In both cases the data value, e.g. a voltage of -20V..+20V, is transformed to a code value which
could be something like 0..4091 as output to a 12Bit DAC. This output value is passed to the
peripherals via the method SetOutput() of the appropriate IO-Handler object. The IO-Handler is
connected to the C_NO item with its method Connect(). It can scale the data value with several
methods that all take the parameters Scale Factor, Offset and Scale Mode (none, linear, exp).
C_NO is like C_NI a subclass of C_DAT. It adds to its attributes (Data Value, Physical Unit and
Format) the attributes Scale Factor, Offset and Scale Mode. In addition, C_NO has also the
Out_Data attribute to define the source of the output value (C_PAR or C_TAB).

Scale Algorithms
C_NO items are able to transform the data value of a physical unit into the information of the
peripherals. The following scaling methods are available and can be defined in the Configuration
(x -> Data Value delivered by SetData(), y -> Output Value, a -> Scale Factor, b -> Offset):

none y = x (the Data Value is passed to the Output Value as is)
Lin y = a*x + b
Exp y = e^(a*x + b)

#include "vsno.h"

Runtime Virtual Public Members
SetValue Sets a command to the C_NO item.
SetData Sets the C_NO item the object's data value.
n/l/fGetOutput Call for the scaled output value in according format.
Disconnect Sets the pointer to m_pIOHandler to NULL.

Runtime Public Members
UseSimpleGetOutput Forces the NO item to use the SetOutput(nChan) method

instead of SetOutput(xVal, nChan).

Member Functions

C_NO::SetValue
virtual void SetValue (int nVal);

92 VFSM System Class Library Reference

nVal Number of a valid C_NO command (see e_DATA_Cmds in VSYSTYP.H).
Remarks Sets the command to the C_NO. It accepts DC_Off, DC_On, DC_Set and DC_NewData:

DC_Off State goes to DS_OFF and the data and output are set to zero.
DC_On State goes to DS_CHANGED the output is set to the data of the attached

parameter or table.
DC_NewData State goes to DS_CHANGED the new data is copied to the internal data

and output.
DC_Set State goes to DS_SET. Value is set to the output. It is not copied from the

attached parameter or table.

C_NO::SetData
virtual void SetData (short nData);

virtual void SetData (unsigned short nData);

virtual void SetData (long lData);

virtual void SetData (float fData);

virtual void SetData (CUniversal& Data);

l,n,f,Data Output value in appropriate format.
Remarks Is typically called by user written output functions. The value is transformed to the

appropriate format. SetData() changes the C_NOs status to DS_CHANGED (and of course
the data value) and sends the scaled value to the attached output handler via the IO-Handler's
method SetOutput().

See Also CIO_Handler:: SetOutput
Example int Func1 (CItem* pOwner, int nVO)

{
C_NO* pAO;
short i = 2047;
 pAO = (C_NO*)GetAssItem(5);
 pAO->SetData(i);
 return 1;
}

C_NO::xGetOutput
short int nGetOutput (void);

long lGetOutput (void);

float fGetOutput (void);

Remarks Gets the scaled output value in according format.
Return Value Output value of the NO is scaled, formatted and possibly limited.
Example void CAOUnit::SetOutput (int nChan)

{
long lVal;
 if(m_pSetNOs)
 {
 lVal = m_paNO[nChan]->lGetOutput();
 // .. put lVal to DAC hardware
 }
} /* End of CAOUnit::SetOutput */

C_NO::Disconnect
virtual void Disconnect (void);

VFSM System Class Library Reference 93

Remarks Typically used by the IO-Handler object when it is destroyed. Sets the pointer m_pIOHandler
to NULL, so that a possible access to the IO-Handler can be avoided (m_pIOHandler ->
(member) set to NULL)

C_NO::UseSimpleGetOutput
void UseSimpleGetOutput (void);

Remarks Typically used by IO handles during system initialization. Forces the NO to use the
CIO_Handler::SetOutput (int nChan) virtual method with the intension to use one of the
xGetOutput() methods.

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R NO object's state as number, see e_DATA_States
Value W NO object’s command number, see e_DATA_Cmds
State Name R NO object's state as text string
Format R NO object's format as string
Physical Unit R NO object's unit as string
Data Value R NO object's value as string according its own format
Data Value W Set NO object's value as string representation
Scale Factor R Scale factor
Offset R Offset
Scale Mode R Scale mode as string

VFSM System Class Library Reference 95

class C_OFUN : public CItem
Output Function items are objects holding a connection to a user written procedure of a well
defined type. A C_OFUN item object has the attributes: the pointer to the C_UNIT or C_VFSM
item it belongs to and a pointer to the appropriate user written output function. The CItem’s
internal value represents the return value of the Output Function that is a user defined integer. The
virtual method SetValue() calls the output function and passes to it the set value and the pointer to
the item that owns the C_OFUN object.

#include "vsofu.h"

Remarks The C_OFUN class has no public programming interface.

Host Interface

Attribute Ext. Acc. Description (enumeration see VSYSTYP.H)
Value X OFUN object's value (the OFun's input or return value)

96 VFSM System Class Library Reference

class C_PAR : public C_DAT
C_PAR items are objects holding values used as time constants, output values or switchpoint
values. A C_PAR item is a subclass of C_DAT. It adds to its attributes Data Value, Physical Unit
and Format the attributes Category (describes the persistence aspect), LimitLow/High and Init
Value. The state of a C_PAR item object corresponds to one of the C_DAT states such as
DS_CHANGED or DS_DEF.

Category
There are two main parameter category classes: PP (process parameters) and EP (equipment
parameters). Equipment parameters typically define a machine’s general behavior, changed from
time to time, but valid over system shutdowns. Process parameters are typically used as a kind of
recipe. The management of the PPs is the user interface’s responsibility. The EPs (in a Windows
NT environment) are automatically stored in the Registry. With three EP categories it is possible
to store EPs workstation wide:

PP Don’t store to Registry, managed otherwise e.g. by the user interface
EP HKEY_CURRENT_USER path ../EP
EP_LM_ADMIN HKEY_LOCAL_MACHINE path ../EP_ADMIN
EP_LM_USERS HKEY_LOCAL_ MACHINE path ../EP_USERS

Remarks The category EP allows parameter to be stored and used once individually per user,
EP_LM_USERS common to all users. The EPs of category EP_LM_ADMIN are write
protected from other users for Administrators.
The Registry is used under Windows. In UNIX-like operating systems the Registry is
replaced by a file system (see the CRegistry class). Handling of that is transparent for the
user: RTDB built for Windows stores the EP parameters in Registry, RTDB built for UNIX
stores the parameters in appropriate files.

#include "vspar.h"

Runtime Public Members
GetInitValue Returns a pointer to a CUniversal object with the initialization value.
GetLimitLow Returns a pointer to a CUniversal object with the low limit.
GetLimitHigh Returns a pointer to a CUniversal object with the high limit.
SetLimitLow Sets the value of the limit low attribute.
SetLimitHigh Sets the value of the limit high attribute.

Member Functions

C_PAR::GetInitValue
CUniversal* GetInitValue (void);

Remarks Returns a pointer to a CUniversal object containing the initialization value in the PAR
object's own format.

C_PAR::GetLimitLow
CUniversal* GetLimitLow (void);

Remarks Returns a pointer to a CUniversal object containing the low limit value in the PAR object's
own format.

VFSM System Class Library Reference 97

C_PAR::GetLimitHigh
CUniversal* GetLimitHigh (void);

Remarks Returns a pointer to a CUniversal object containing the high limit value in the PAR object's
own format.

C_PAR::SetLimitLow
void GetLimitLow (float dLL);

dLL limit low value as float.
Remarks Sets the parameter's low limit value.

C_PAR::SetLimitHigh
void GetLimitHigh (float dLH);

DLH limit high value as float.
Remarks Sets the parameter's high limit value.

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R PAR object's state as number see e_DATA_States
State Name R PAR object's state as text string
Format R PAR object's format as string
Physical Unit R PAR object's unit as string
Category R PAR object's category (EP, PP, …)
Data Value R PAR object's value as string according its own format
Data Value W Set PAR object's value as string representation
Limit Low R PAR object's low limit according its own format
Limit High R PAR object's high limit according its own format
Initial Value R PAR object's init value according its own format

VFSM System Class Library Reference 99

Class CRegistry
An application built on RTDB has to store some information to be used by the next start-up. The
CRegistry class is used for storing EP parameters (see the description in C_PAR class).

The rules for storing the parameters under Windows operating systems are:

– EP are stored in HKEY_CURRENT_USER as EP,

– EP_LM_ADMIN are stored in HKEY_LOCAL_MACHINE as EP_ADMIN,

– EP_LM_USERS are stored in HKEY_LOCAL_MACHINE as EP_USERS.

The default full Registry “path” is SOFTWARE\SW Software\RTDB\Settings\.

For a non-Windows operating system (in principle, UNIX like) special Registry files are used for
this purpose:

– EP in .SWdb.reg file in a HOME directory

– EP_LM_ADMIN in .SWdb_ADMIN.reg file in the /root directory

– EP_LM_USERS in .SWdb_USERS.reg file in the /root directory.

– Be aware of a dot at the beginning of the file names (UNIX convention for hidden files).

The max length of strings written into the files is 256 characters.

Remarks The CRegistry class is here documented for supplying the information about storing the EP
parameters in the Registry. By programming a run-time system based on RTDB library,
especially IO-Handlers or Output Functions there is no direct demand for accessing the EP
parameters. It is possible to use the Registry files under Windows. In such a case the
environment variable HOME must define the directory path which contains the (user)
Registry file and the /root directory must exist. The following similar CRegistryConfig class
is more interesting for a user.
It is difficult to find a standard solution for storing EP parameters in embedded systems. In
fact, each system has a specific solution.
Note the naming convention used: for a non-Windows environment the Registry is replaced
by Registry files.

#include "registry.h"

Runtime Public members
Init Opens the Registry keys.
Query Queries a string value from a Registry key.
SetValue Sets or changes string value in a Registry key.

Member functions

CRegistry::Init
Init(const char* AdminDataPath= NULL);

Remarks Opens three Registry keys: EP, EP_LM_ADMIN or EP_LM_USERS, respectively
opens/creates three Registry files in a non Win32 enviroment.

100 VFSM System Class Library Reference

CRegistry::Query
Query(const char* ValueName, CStdString &sData, e_PAR_Categories Category=

PG_EP);

Remarks Queries a string value from one of three Registry keys: EP, EP_LM_ADMIN or
EP_LM_USERS, respectively gets a string value from Registry files. The default Registry key
is the current user (EP).

CRegistry::Set
SetValue(const char* ValueName, CStdString* sData, e_PAR_Categories Category=

PG_EP);

Remarks Sets or changes a string value in one of three Registry keys: EP, EP_LM_ADMIN or
EP_LM_USERS, respectively sets/changes string values in Registry files. The default
Registry key is the current user (EP).

VFSM System Class Library Reference 101

Class CRegistryConf
An application built on RTDB has to store some information to be used by the next start-up. The
CRegistryConf class is used for storing configuration file paths.

By start-up the RTDB needs the configuration file (‘swd) and two directories: a directory which
contains the VFSM specification files (*.iod and *.str) and a directory for SULOG.TXT and
TRACE.TXT files. This information is stored under Windows operating system under Registry
key SOFTWARE\SW Software\RTDB\Settings\Conf as (for istance): ConfigFile, DataFilePath
and VFSMTypePath.

For a non-Windows operating system (in principle, UNIX-like) a special Registry file is used for
this purpose: .SWdb_Conf.reg.

Be aware of a dot at the beginning of the file name (UNIX convention for hidden files).

The max length of strings written into the files is 256 characters.

Remarks It is possible to build an application which does not use the Registry under Windows. In such
a case the environment variable HOME must define the directory path which will contain the
Registry file .SWdb_Conf.reg, for instance “c:\Home”. The directory must exist before the
run-time application starts.
It is difficult to find a standard solution for storing the Configuration data in embedded
systems. In fact, each system has a specific solution.

#include "registryconf.h"

Runtime Public members
Init Opens the Registry keys.
Query Queries a string value from a Registry key.
SetValue Sets or changes string value in a Registry key.

Member functions

CRegistryConf::Init
Init();

Remarks Opens the Registry key Conf, respectively opens/creates the Registry files in a non Win32
enviroment.

CRegistryConf::Query
Query(const const char* ValueName, CStdString &sData);

Remarks Queries a string value from the Conf Registry key: ConfFile, DataFilePath or
VFSMTypePath, respectively gets a string value from the Registry file.

CRegistryConf::Set
SetValue(const char* ValueName, CStdString* sData,);

Remarks Sets or changes a string value in the Conf Registry key: ConfFile, DataFilePath or
VFSMTypePath, respectively sets a string value from the Registry file.

VFSM System Class Library Reference 103

class CQueueReceiver
Instances of the class CQueueReceiver and CQueueSender can only exist in a multithreading
environment such as WIN32. They are typically used to connect I/O unit threads with the real-time
data base. They are designed for high performance in speed and reliability. A queue receiver can
have one or several queue senders. A queue receiver is created with the method Create() by
specifying the number and the size of the queue entries. The entries remain allocated for the
lifetime of the queue. After that the senders are connected with the method
CQueueSender::Connect(). A queue has two semaphores: one to signal the receiver thread when
the queue is not empty anymore and one to signal the sender thread(s) when the queue is not full
anymore. A mutex prevents the queue data structure from simultaneous access by sender(s) and
receiver.

#include "vsmequ.h"

Initialization - Public Members
Create Allocates the needed number and size of entries.
GetMessageSize Gets the size of the queue entries.

Runtime Public Members
Receive Puts a free packet to the queue and gets a message packet back.
GetBody Gets a pointer to the data within the message packet.
operator void* Pointer to the message body.

Member Functions

CQueueReceiver::Create
bool Create(int nBodySize, int nEntries);

nBodySize Size of the queue entries in bytes.
nEntries Number of queue entries.

Remarks Allocates nEntries of message entries with the size of nBodySize and one entry for the
receiver itself. The size has to fit to the data that is intended to be sent via the queue.

Return Value true if OK.

CQueueReceiver::GetMessageSize
int GetMessageSize (void);

Remarks A message packet in fact consists of the message body for the user data and additional data
for the queue management. This method returns the size of only the message body in bytes.

Return Value Message body size in bytes.

CQueueReceiver::Receive
bool Receive(void);

104 VFSM System Class Library Reference

bool Receive(unsigned long dwTimeout);

dwTimeout Timeout interval in milliseconds.
Remarks The caller thread waits first on the queue mutex for the access to the queue. If the queue is

empty it then waits on the receive semaphore until a sender puts a message to the queue or
until the dwTimeout expires. If the queue is (or becomes) not empty the callers packet is put
to the empty packets and it gets the first or only message packet from the queue. In case of a
timeout the caller keeps his packet and the method returns false. Receive() without timeout
waits infinitely.

Return Value true if message received, else false when timeout expired.

CQueueReceiver::GetBody
char* GetBody (void);

Remarks Uses the queue as a C string representation of the received message body.
Return Value Pointer to the message body.

CQueueReceiver::operator void*
operator void*(void);

Remarks Same as GetBody() as operator.
Return Value Pointer to the message body.

VFSM System Class Library Reference 105

class CQueueSender
The description - see CQueueReceiver.

#include "vsmequ.h"

Initialization - Public Members
Connect Connects itself to a receiver queue.
GetMessageSize Gets the size of the message body.

Runtime Public Members
Send Puts a message packet to the queue and gets a free one back.
SendUnic Sends only if message packet is not there already.
SendLdt Sends; if queue is full remove the oldest packet.
pstBody Returns a pointer to the data within the message packet.

Member Functions

CQueueSender::Connect
void Connect(CQueueReceiver* pQueue);

pQueue Pointer to the queue receiver to connect to.
Remarks Connects itself to the specified queue. Creates the message packet according to the queue

receiver's own message size.

CQueueSender::GetMessageSize
int GetMessageSize (void);

Remarks A message packet in fact consists of the message body for the user data and additional data
for the queue management. This method returns the size of only the message body in bytes.

Return Value Message body size in bytes.

CQueueSender::Send
bool Send (void);

Remarks The caller thread waits first on the queue mutex for the access to the queue. If the queue is
full it then waits on the send semaphore until the receiver puts a free message packet to the
queue. If the queue is (or becomes) not full the caller’s packet is put onto the queue and it
gets the first or only free message packet from the queue.

Return Value Always true.

CQueueSender::SendUnic
bool SendUnic (void);

Remarks Same as Send() but send only if packet isn't already in the queue.
Return Value true if entered, false if message packet was already there.

CQueueSender::SendLdt
bool SendLdt (void);

106 VFSM System Class Library Reference

Remarks Same as Send() but limited. If queue is full (no free packets) remove the oldest done packet.
The oldest packet gets lost but it never has to wait.

Return Value true if OK else false.

CQueueSender::pstBody
void* pstBody (void);

Remarks Uses a C anytype pointer representation of the send message body.
Return Value Pointer to the message body.

VFSM System Class Library Reference 107

class C_STR: public CItem
The STR VFSM is used to control a data object used to evaluate strings. In detail, it compares the
received string with a regular expression (RE). The result is a “match”, “no-match” or “error”. The
regular expression itself can be a DAT, PAR or a hard coded string. The regular expression allows
all special characters as known in UNIX tools like sed, awk. This means that also multiple
matches are possible, i.e. the compare result “match” can deliver more then one resulting string.
The resulting (sub-) string(s) can be stored in other objects such as STR, DAT, PAR or NI.
Dependant on the data type of the destination object, the resulting (sub-) string will be converted.
In case the conversion is not possible the destination object will be not changed.

A C_STR item object acts as a simple finite state machine. The state table is presented here in a
form of a transition matrix (the preambles "SC_" and "SS_" are omitted):

from \ to OFF INIT DEF ERROR MATCH NOMATCH
OFF - on - - - -
INIT off - - error match nomatch
DEF off - - error match nomatch
ERROR off - set - - -
MATCH off - set - - -
NOMATCH off - set - - -

Supported Regular Expressions
RE Meaning Example
. Matches one arbitrary character a.c matches ‘abc’ but not ‘abbc’
^ Matches the beginning of a string ^ab matches ‘abcd’ but not ‘cdab’
$ Matches the end of a string ab$ matches ‘cdab’ but not ‘abcd’
\n n=1..9, matches the same string of

characters as was matched by a
sub expression enclosed between
() preceding the \n. n specifies the
n-th sub expression

(ab(cd)ef)A\2 matches ‘abcdefAcd’

() sub expression (\d)A(\d) matches 1A2, 0A4 ...
[] Defines a set of characters to be

matched
[a-z] matches ‘s’, ‘w’… but not ‘S’, ‘W’…

[^] Defines all characters except the
characters in the set

[^1-9] matches ‘s’, ‘W’ … but not ‘1’,
‘2’…

(| |) Matches one of the alternatives (ab|cd) matches ‘ab’ and ‘cd’
RE+ Matches one or more times the RE [^1-9]+ matches ‘stateWORKS’ but not

‘Obj5’
RE? Matches one or zero times the RE abc? matches ‘ab’ and ‘abc’
RE* Matches zero or more times the

RE
ab* matches ‘a’, ‘ab’, ‘abb’ …

RE{n} Matches exactly n times the RE ab{2} matches ‘abb’ only
RE{n,} Matches at least n times the RE ab{2,} matches ‘abb’, ‘abbb’ but not ‘ab’
RE{n,m} Matches any number of

occurrences between n and m
inclusive

ab{1,2} matches ‘ab’ and ‘abb’ only

#include "vsstr.h"

108 VFSM System Class Library Reference

Runtime - Virtual Public Members
SetValue Sets a command to the C_STR object.
GetValue Gets the state of the C_STR (Control Value).

Member Functions

C_STR::SetValue
virtual void SetValue (int nCmd);

nCmd Value of the C_STR Command (casted to e_STR_Cmds, see VSYSTYP.H)
Remarks Is typically called by an item's output action to set one of the C_STR commands. C_STR

commands can change the C_STR's status either directly by the command or if the command
is a SC_NewDataCmd via the changed input or changed limits.

C_STR::GetValue
virtual int GetValue (void);

Remarks Gets the internal item value, the state of the C_STR. Here, this means the Control Value of
the C_STR.

Example The state of the C_STR as a number, to be cast to e_STR_States (see VSYSTYP.H).

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R SWIP object's state as number, see e_SWIP_States
Value W SWIP object's command, see e_SWIP_Cmds
State Name R SWIP object's state name
Service Mode X 0->service mode in OFF, 1->ON
Sevice Value X SWIP object's service value, see e_SWIP_States
Peripheral Value R SWIP's state according input and limits
Limit Low X SWIP object's low limit according its own format
Limit High X SWIP object's high limit according its own format
Data Value R SWIP object's input value

110 VFSM System Class Library Reference

class C_SWIP : public CItem
C_SWIP item objects are objects that divide an arbitrary data value range into three parts and
reflect the presence in one of these of the data value by setting the item's internal value. A
C_SWIP works together with at least one item of type C_DAT (and of course with all derivations
of it like C_NI, C_UDC or C_PAR) as input data. The low- and high-limit values can be
constants, or set via configuration or they can also be items of type C_DAT (typically of type
C_PAR).

A C_SWIP item object acts as a simple finite state machine. The state table is presented here in a
form of a transition matrix (the preambles "SC_" and "SS_" are omitted):

from / to OFF LOW IN HIGH
OFF - On & “low” On & “in” On & “high”
LOW Off - “in” “high”
IN Off “low” - “high”
HIGH Off “low” “in” -

“Low”: Input<LimitLow, “in”: LimitLow<Input<LimitHigh, “high”: Input>LimitHigh

In any of the states the commands SC_NewLimitLow, SC_NewLimitHigh and SC_NewInput are
allowed. They can lead in the states SS_LOW, SS_IN and SS_HIGH to a change to another of
these states.

C_SWIP items contain a feature called service mode that allows (via a client) the item's internal
value to be overridden.

If the Service Mode switch SvM is false, the Peripheral Value PeV is connected to the C_SWIP
item's value Val. This value is also called the Control Value, because it is the value seen by the
control (Vfsm). If the Service Mode switch is true, the service mode is ON and the Service Value
SvV is connected to the C_SWIP item's value Val i.e. the SWIP is disconnected from its
peripherals. The Peripheral Value is set by the SWIP's logic according to the input value and the
limits. The Service Mode switch and the Service Value are set by the clients (see the C_SWIP
item's attributes "SvV" and "SvM").

#include "vsswip.h"

Runtime - Virtual Public Members
SetValue Sets a command to the C_SWIP object.
GetValue Gets the state of the C_SWIP (Control Value).

Runtime - Public Members
SetLimits Sets the C_SWIP item object's low limit and high limit.
SetLimitLow Sets the C_SWIP item object's low limit.
SetLimitHigh Sets the C_SWIP item object's high limit.
GetLimitLow Returns a pointer to a CUniversal object with the low limit.
GetLimitHigh Returns a pointer to a CUniversal object with the high limit.

SvMSvV

PeV Val

SWIP Logic

VFSM System Class Library Reference 111

Member Functions

C_SWIP::SetValue
virtual void SetValue (int nCmd);

nCmd Value of the C_SWIP Command (casted to e_SWIP_Cmds, see
VSYSTYP.H)

Remarks Is typically called by an item's output action to set one of the C_SWIP commands. C_SWIP
commands can change the C_SWIP's status either directly by the command or if the command
is a SC_NewDataCmd via the changed input or changed limits.

C_SWIP::GetValue
virtual int GetValue (void);

Remarks Gets the internal item value, the state of the C_SWIP. This means here the Control Value of
the C_SWIP.

Example The state of the C_SWIP as a number, to be cast to e_SWIP_States (see VSYSTYP.H).

C_SWIP::SetLimits
void SetLimits (float fLimLow, float fLimHigh);

fLimLow/High Low and High Limit Values.
Remarks Typically used by a user written output function to set the C_SWIP's low and high limits.

Possibly causes a state change. The limit values are transformed from the float of the
parameter to the same internal representation as the C_SWIP's input value.

Example C_PAR* pPar = (C_PAR*) (pOwner->GetAssItem(cPLim));
C_SWIP* pSwip = (C_SWIP*)(pOwner->GetAssItem(cSwip));
C_NO* pAo = (C_NO*) (pOwner->GetAssItem(cAo));
float fLimH = pPar->fGetData();
float fLimL = -fLimH;
float fOVal;
 pPar = (C_PAR*)(pOwner->GetAssItem(cPVal));
 fOVal = pPar->fGetData();
 fLimH += fOVal;
 fLimL += fOVal;
 pSwip->SetLimits (fLimL, fLimH);
 pAo->SetData (fOVal);

C_SWIP::SetLimitLow
void SetLimitLow(float fLimLow);

fLimLow Low limit values.
Remarks Typically used by user written output functions to set the C_SWIP's low limit. Possibly

causes a state change. The limit value is transformed from the float of the parameter to the
same internal representation as the C_SWIP's input value.

C_SWIP::SetLimitHigh
void SetLimitHigh(float fLimHigh);

fLimHigh High limit values.
Remarks Typically used by user written output functions to set the C_SWIP's high limit. Possibly

causes a state change. The limit value is transformed from the float of the parameter to the
same internal representation as the C_SWIP's input value.

112 VFSM System Class Library Reference

C_SWIP::GetLimitLow
CUniversal* GetLimitLow (void);

Remarks Returns a pointer to a CUniversal object containing the low limit value in the SWIP object's
own format.

C_SWIP::GetLimitHigh
CUniversal* GetLimitHigh (void);

Remarks Returns a pointer to a CUniversal object containing the high limit value in the SWIP object's
own format.

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R SWIP object's state as number, see e_SWIP_States
Value W SWIP object's command, see e_SWIP_Cmds
State Name R SWIP object's state name
Service Mode X 0->service mode in OFF, 1->ON
Sevice Value X SWIP object's service value, see e_SWIP_States
Peripheral Value R SWIP's state according input and limits
Limit Low X SWIP object's low limit according its own format
Limit High X SWIP object's high limit according its own format
Data Value R SWIP object's input value

VFSM System Class Library Reference 113

class C_TAB : public CItem
A C_TAB is a table item. It has no data value of its own. It has an array with pointers to data items
(typically parameters). Its state (the item's internal value) is the index to this array. The state is set
directly by the virtual method SetValue(). So it switches between the several data items. Thus, it
acts as a multiplexer that maps several C_DAT items (or derived) to one. To an item that uses it
(typically C_NO, C_CNT, C_SWIP) it looks like a C_DAT item.

Although for a C_TAB item only derivations of the item type C_DAT (typically parameters) make
any sense, it accepts every item type. In the worst case it gets a value of zero from them.

#include "vstab.h"

Runtime Virtual Public Members
SetValue Sets the C_TAB object's internal value, the index.
GetData Gets the indexed data as a universal data object.

Member Functions

C_TAB::SetValue
virtual void SetValue (int nVal);

nVal Index to the item array (0 based), typically a virtual output value.
Remarks Is typically called by a Vfsm's output function or by a user written output function. It sets the

index to the according data item. Items that use the TAB (e.g. a NO) are advised at the
change and can get the new data with GetData().

C_TAB::GetData
virtual CUniversal* GetData (void);

Remarks Gets a pointer to the universal data object value that is indexed by the internal value. If out of
range or not available it returns a dummy data with long integer.

Return Value A pointer to the CUniversal object.

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value X TAB object's value

114 VFSM System Class Library Reference

class C_TI : public C_CNT
C_TI is the class of timer objects. It contains all the data and methods to handle the timer aspect of
an application. C_TI is a subclass of the item type Counter (C_CNT). It inherits the counter's state
machine and adds the aspect of the timebase. It has no other public interface.

#include "vstim.h"

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R Timer's state as number see e_CNT_States
Value W Timer's commands as number; see e_CNT_Cmds
State Name R Timer's state as a text string
Count Constant X as an integer number
Count Register R as an integer number
Physical Unit R The timer's timebase: "100ms", "sec" or "min"

class C_UDC : public C_DAT
The Up/Down Counter item objects C_UDC are objects derived from the class C_DAT. They
hold a data value of type long (Sign plus 31 bits) used as a counter value. Different from other
counter objects (C_CNT, C_TI or C_ECNT) they have no counter constant and do not return
states as OVER or RESET. Their state is derived from those of C_DAT such as DS_CHANGED
or DS_DEF. The counter can be monitored with a C_SWIP object and has a range from negative
to positive values. C_UDC adds to C_DAT attributes (Data Value, Physical Unit and Format) the
references to up to three item objects that can deliver the Clear-, Up- or Down-triggers by their
internal values. The method SetValue() sets a command (UC_Clear, UC_Up and UC_Down, see
e_UDC_Cmds in VSYSTYP.H). There are two ways to control a C_UDC item: via a Vfsm's
virtual output and via an item's ItemAdviseList. In both cases the C_UDC's method SetValue()
executes an appropriate command.

#include "vsudc.h"

Runtime - Virtual Public Members
SetValue Sets a command to the C_UDC object.
GetValue Returns the state of a C_UCD object.

Member Functions

C_UDC::GetValue
virtual int GetValue (void);

Remarks Gets the internal value, the state of the C_UDC item. This values can be one of the enum
e_DATA_States (DS_OFF = 0, DS_DEF, DS_CHANGED, DS_INIT).

Return Value C_UDC state as number (see e_DATA_States is SYSTYP.H).

VFSM System Class Library Reference 115

C_UDC::SetValue
virtual void SetValue (int nCmd);

nCmd Value of the C_UDC command as number (cast to e_UDC_Cmds).
Remarks Is typically called by item's ItemAdviseList, by Vfsm's virtual output or by user written

output functions to set one of the C_UDC commands (e_UDC_Cmds see VSYSTYP.H).
UDC commands change the C_UDC item's status to DS_CHANGED and of course the
value of the counter (the data value).

Host Interface

Attribute Acc. Description (enumeration see VSYSTYP.H)
Value R UDC object's state as number see e_DATA_States
Value W UDC object's command see e_UDC_Cmds
State Name R UDC object's state as text string
Format R UDC object's format as string (always "long")
Physical Unit R UDC object's unit as string
Data Value R UDC object's value as string in long format

Remarks PhysicalUnit come via the Configuration File from the stateWORKS Studio/DAT-
Properties to the data item object. PhysicalUnit is not used by the VFSM System. Format is
always long.
Data set (poked) by a destination application can be in any valid format. If the format isn't
valid the data value is not changed and the old value is sent as update.

116 VFSM System Class Library Reference

class C_UNIT : public CItem
The C_UNIT item is an object that collects the I/O objects for a physical IO-Handler. The
C_UNIT has an AssItemList to hold the connection to the I/O objects, a unit type, a physical
address and a communication port name. It gets these things from the Configuration File during
the System Startup Phase Create, and it makes it accessible to the IO-Handlers of the IO-Handler.
It is the link between the configuration and the IO-Handler.

IO objects are basically the item types C_DI, C_DO, C_NI and C_NO. A C_UNIT item typically
comprises items of these types because they hold connections to real physical I/Os. But there is no
limitation to that. A C_UNIT item can hold every item type. In practice, for instance C_CMD
C_XDA and C_PAR item types are often used in the C_UNIT.

The C_UNIT class is a derivation of CItem, but it makes no use of its data.

#include "vsunit.h"

Public Members
GetUnitTypeName Returns the name of the unit type (the IOD-File name).
GetPhysicalAddress Returns the configured physical address.
GetCommPort Returns the configured communication port name.
GetNumbAssItem Returns the number of associated item.
GetAssItem Returns a pointer to the indexed associated item.

Member Functions

C_UNIT::GetUnitTypeName
CString GetUnitTypeName (void);

Remarks Returns the name of the IO-Handler type that is intended to cooperate.
Return Value IO-Handler type as string.

C_UNIT::GetPhysicalAddress
int GetPhysicalAddress (void);

Remarks This function is typically used by IO-Handlers to appropriately address the IO-hardware.
Return Value Returns the C_UNIT object's physical address.

C_UNIT::GetCommPort
CString GetCommPort (void);

Remarks Returns the communication port as string representation.
Return Value Communication port, e.g. "COM1".

C_UNIT::GetNumbAssItem
int GetNumbAssItem (void);

Remarks Returns the maximum number of associated items of that C_UNIT object.
Return Value Number of associated items.

VFSM System Class Library Reference 117

C_UNIT::GetAssItem
CItem* GetAssItem (int nObjID);

nObjID Index to an associated item.
Remarks Returns the indexed associated item. Index is the number of the item within the UNIT.

Returns NULL if number is out of bounds.
Return Value Pointer to the indexed associated item or NULL if none.

Host Interface

Attribute Acc. Description
Assoc Item List R Associated item list
Type Name R Type of the cooperating IO-Handler as string
Physical Addr R Physical address of the IO-Handler's hardware as integer
CommPort R Communication port as string

Remarks AssocItemList is a list of the items that are collected by the UNIT. The list has the form:
"PAR PollTime\nDI IOUnit1_Di0\nDI IOUnit1_Di1\n <and so on>\n"
PAR is the item type and PollTime is the item name. Type and name are separated by a blank.
The items are separated by the <NL>characters (new line = 0x0A).
Type Name, Physical Addr and CommPort come via the Configuration File from the
stateWORKS Studio/UNIT-Properties to the unit item object. They are not used by the
VFSM System.

118 VFSM System Class Library Reference

class CUniversal
CUniversal objects are objects holding values in various formats. This data type is typically used
by C_DAT item objects (and the derivations C_PAR, C_NI, C_NO). CUniversal objects have as
attributes the enumeration Format and the union Data that stores the data in the appropriate
format at the same physical memory address. This union has a size of 4 bytes. Of course when the
format is char, three Bytes are wasted. There are operators and methods to copy objects with
different formats. Copying from bigger formats to smaller (e.g. long to char) is done by limiting to
the smaller object’s value range (e.g. 900 to a char is 127, -10e37 to a boolean is 0).

#include "vsuni.h"

Initialization - Virtual Public Members
Create Sets the CUniversal object's format.

Runtime - Public Members
bGetData Returns the data value converted and limited to 1Bit.
chGetData Returns the data value converted and limited to signed 8Bit.
uchGetData Returns the data value converted and limited to unsigned 8Bit.
nGetData Returns the data value converted and limited to signed 16Bit.
unGetData Returns the data value converted and limited to unsigned 16Bit.
lGetData Returns the data value converted and limited to signed 32Bit.
fGetData Returns the data value converted to 32Bit float.
CopyConvert Copies one object's data to another. Convert and limit to appropriate

format.
Display Makes a string representation of the data in appropriate format.
Set Sets the object's data from a string representation.
SetData Sets the object's data when string format.
GetFormat Returns the object's data format as enumeration.
stGetFormat Returns the object's data format as string representation.
operator= Overloads, copies data of several formats to the object's data
IsGreaterThan Compares two object's data independent of their format.
IsSmallerThan Compares two object's data independent of their format.

Data - Public Members
m_Data Data structure direct access in r_Universal (see VSYSTYP.H).

Member Functions

CUniversal::Create
void Create (e_DATA_Formats Format);

void Create (CString stFrm);

Format Format specification as enumeration (see e_DATA_Formats in
VSYSTYP.H).

stFrm Format specification as string representation.
Remarks Sets the format of the object's data either directly or via a string. It can be applied after

instanciation to set the format the first time, or any time to change the format of the object's
data. The data value remains if the value fits to the format; otherwise it is limited to the new
format's limits.

VFSM System Class Library Reference 119

CUniversal::xGetData
bool bGetData (void);

char chGetData (void);

unsigned char uchGetData (void);

short int nGetData (void);

unsigned short unGetData (void);

long lGetData (void);

float fGetData (void);

Remarks Returns the data value in the appropriate format independent of the object's data format.
Possibly limited to the return value's limits.

Return Value CUniversal object's data value in the appropriate format.

CUniversal::CopyConvert
void CopyConvert (CUniversal* pSrc);

pSrc Pointer to the source object.
Remarks Copies the value of the source object's data (in the format for that object) into the data of the

destination object, in the format for the destination. The value is possibly limited to this
format's limits, so data loss could occur.

CUniversal::Display
bool Display(CString* pstVal);

pstVal Pointer to the string object to copy the data to.
Remarks Makes a string representation of the object's data according to its format.

true if OK, false if format not supported.

CUniversal::Set
bool Set(CString* pstVal);

pstVal Pointer to the string object to take the data from.
Remarks Puts the string representation of a value to its appropriate format. Applies the limits and

format according to the value. Tests whether the value has changed. In case of a format error
leaves the data value unchanged, but returns true (use to fake changed data).

Return value Returns true if the data has changed.
Example CUniversal data;

CString st = "1.2345";
 data.Create(DF_FLOAT);
 data.Set(&st);

CUniversal::SetData
void SetData (CString& stData);

stData String object to copy to CUniversal object's string object.
Remarks Copies the string object to the object's data if its format is DF_STRING, else do nothing

CUniversal::GetFormat
e_DATA_Formats GetFormat (void);

Remarks Returns the CUniversal object's data format as enumeration (see VSYSTYP.H).
Return value Data format.

120 VFSM System Class Library Reference

CUniversal::stGetFormat
CString* stGetFormat (void);

Remarks Returns the CUniversal object's data format as string representation.
Return value Data format as string.

CUniversal::operator=
CUniversal operator= (bool b);

CUniversal operator= (char ch);

CUniversal operator= (unsigned char uch);

CUniversal operator= (short int n);

CUniversal operator= (unsigned short un);

CUniversal operator= (long l);

CUniversal operator= (float f);

CUniversal operator= (CUniversal& Uni);

b, ch, uch, n, un, l, f, Uni CUniversal object's data new value in appropriate format.
Remarks Overloads the = Operator, so that several formats can be copied to a CUniversal object's data.

Too large values are limited to the limits of the destination's format.

CUniversal::IsGreaterThan

CUniversal::IsSmallerThan
bool IsGreaterThan(CUniversal& Uni);

bool IsSmallerThan(CUniversal& Uni);

Uni Object to compare.
Remarks Compares the current CUniversal object's data value with the specified one. Takes the current

format.
Return value According to the appropriate fact.

CUniversal::m_Data
r_Universal m_Data;

m_Data CUniversal object's data structure.
Remarks Direct access to the object's data structure.

VFSM System Class Library Reference 121

class C_VFSM : public CItem
A C_VFSM item object is an object that stores the state of the Vfsm. It is the incarnation of the
Vfsm. The state is simply the item's internal value. Additional data held here are the Virtual Input
(VI), a reference to the Vfsm-Type object (state table, IO objects) and others.

C_VFSM items contain a service mode that allows (via a client) the state to be overridden:

If the Service Mode switch SvM is false, the real state of the Vfsm (here called the Peripheral
Value) PeV is connected to the C_VFSM item's value Val. This value is also called the Control
Value, because it is the value seen by the control (the master Vfsm). If the Service Mode switch is
true, the service mode is ON and the Service Value SvV is connected to the C_VFSM item's value
Val i.e. the VFSM item is disconnected from its state machine. The Peripheral Value is set by the
Vfsm-Executor. The method GetValue() returns the item's value Val. The method GetState()
always gets the state machine's state PeV. The Service Mode switch and the Service Value are set
by the clients (see the C_DI item's attributes "SvV" and "SvM").

Note, that the user will never use the methods of the C_VFSM class because there is no
application for them in programming IO-Handlers or Output Functions. The C_VFSM class is
documented here only for training purposes to explain the functioning of the VFSM Executor.

#include "vsvfsm.h"

Runtime Virtual Public Members
SetValue Enters the specified VI name, clears first the whole class.
ResetValue Removes the specified VI name.
GetValue Returns the state of the Vfsm including the service mode.
GetState Returns the state of the Vfsm, no service mode.
GetUnitTypeName Returns the name of the C_VFSM's type (specification, state table).
GetNumbAssItem Returns the number of associated item
GetAssItem Returns a pointer to the indexed associated item.

Member Functions

C_VFSM::SetValue
virtual void SetValue (int nVI);

nVI The VI name as a number.
Remarks Is typically called by other item objects to set a VI name to the VI-set of this C_VFSM item.

It removes the class belonging to the nVI from the C_VFSM's VI set and then it enters the
nVI and calls the executor.

SvMSvV

PeV Val

State Machine Master State Machine

122 VFSM System Class Library Reference

C_VFSM::ResetValue
virtual void ResetValue (int nVI);

nVI The VI name as number.
Remarks Is typically called by other items to remove the VI class of the appropriate VI name from this

C_VFSM's VI-set. Although the VI-set changes, the executor is not called.

C_VFSM::GetValue
virtual int GetValue (void);

Remarks Returns the item's internal value. This means here the state of the Vfsm. It depends on Service
Mode switch, Service Value or the Vfsm's state machine.

C_VFSM::GetState
int GetState (void);

Remarks Is typically called by the Vfsm-Executor to look for the state of the Vfsm it is executing. The
state machine's state returned here is the real state, independent of the service mode.

C_VFSM::GetUnitTypeName
virtual CString GetUnitTypeName (void);

Remarks Returns the name of the C_VFSM’s type as a string object. The name is the one of the
appropriate state table specification and IO description file (*.STR, *.IOD).

C_VFSM::GetNumbAssItem
int GetNumbAssItem (void);

Remarks Returns the maximum number of associated items of that C_VFSM object.
Return Value Number of associated items

C_VFSM::GetAssItem
CItem* GetAssItem (int nObjID);

nObjID Index to an associated item.
Remarks Returns the indexed associated item. Index is the number of the item within the VFSM.

Returns NULL if number is out of bounds.
Return Value Pointer to the idexed associated item or NULL if none.

VFSM System Class Library Reference 123

Host Interface

Attribute Acc. Description
Value R State or ServiceValue as numb, see List or IOD-file.
State Name R State machine's state name as string
Virtual Input R Virtual Input, a set
Service Mode X 0 -> service mode OFF, 1 -> ON
ServiceValue X As numbers, see List or IOD-file.
Peripheral Value R State machine's state as number
Assoc Item List R Associated item list
TypeName R Type of the Vfsm as string
List R State names as a list
Run Mode X 0->FreeRun, 1->Hold, 2->Step
Next Step R In Hold-Mode next possible transition else “none”

Remarks Virtual Input is displayed as a set of VI names. A VI string looks like "{1,4,5}". The VI
names are separated by commas. The numbers refer to the I-Block in the according IOD-file.
Assoc Item List is a list of the items that are owned by the VFSM. The list has the form:
"CMD Stepper1_MyCmd\nTI Stepper1_Tim\n DI Stepper1_DiStart\nDO Stepper1_Do1\n"
CMD is the item type and Stepper1_MyCmd is the name. Type and name are separated by a
blank. The items are separated by <NL>characters (new line = 0x0A).
List delivers a string containing names of states ordered by state numbers:
"Init\nOFF\nStep1Busy\nSTEP1\nStep2Busy\nSTEP2\n"
Init is state number 1, OFF is 2 and so on. \n is the <NL>character (new line = 0x0A).
Run Mode = Step means that the state machine performs one state change or one set of due
input actions or both.

124 VFSM System Class Library Reference

class C_XDA : public CItem
C_XDA item objects hold a certain amount of memory used typically by user written output
functions or I/O-Units. They hold as normal items an internal value. The internal value is of
integer type. It is set by the Vfsm's output function or by user written output functions. On the
other hand the internal value can become a virtual input of the same or another Vfsm.

Warning: The C_XDA item object must not be used as an input and as an output in the same state
machine, especially in the same state.

#include "vsxda.h"

Runtime - Virtual Public Members
SetValue Sets the internal value to the C_XDA object.
GetValue Returns the internal value of a C_XDA object.
pMemory Returns the pointer to the auxiliary memory.
nSize Returns the size of the auxiliary memory.

Member Functions

C_XDA::SetValue
virtual void SetValue (int nVal);

nVal Value of the C_XDA.
Remarks Is typically called by Vfsm's virtual output or by user written output functions.

C_XDA::GetValue
int GetValue (void);

Remarks Gets the internal value of the C_XDA item.
Return Value C_XDA value as integer number.

C_XDA::pMemory
void* pMemory (void);

Remarks Gets the pointer to the C_XDA item's auxilary memory block.
Return Value (Any type) pointer to a memory block.

C_XDA::nSize
int nSize (void);

Remarks Gets the size to the C_XDA item's auxilary memory block. This size is set via the
Configuration File from the stateWORKS Studio/XDA-Properties.

Return Value Size of memory block in bytes.

Host Interface
Attribute Acc. Description
Value X Value of the XDA.

126 VFSM System Class Library Reference

class CVfsmSystem
CVfsmSystem is the class that contains the whole Vfsm system. It acts mainly during the Startup
Phase of the system. It can be adapted to a WindowsNT environment or to any other OS.

#include <vswin.h>

Initialization - Public Members
Create Builds up the whole system.
RemoveAll Removes all dynamic data, system remains.
AttachToMainWindow Installs the connection to the container window object.
TimeBaseTick Updates the VFSM System's time base.
ItemNumb Gets the number of a specified item type in the VFSM

System.
FirstItem Looks for the first item of a specified type in the VFSM

System.
NextItem Iterates through all items of a specified type
PollAdviseQueue Empties the VFSM System's event advise queue.

Member Functions

CVfsmSystem::Create
bool Create (CString stVfsmTypePath, CString stDataFilePath, CString

stConfigName);

stVfsmTypePath Directory with the *.STR and *.IOD files.
stDataFilePath Directory for the log files.
stConfigName Directory and name of the Configuration File.

Remarks This method builds up the whole VFSM System. It installs the global database and system
resources access. It performs the System Startup Phase Create, Connect and at last Initialize.

Return Value false if the system isn't able to work: true, there can be errors in configuration but the system
can work.

CVfsmSystem::RemoveAll
void RemoveAll(void);

Remarks Deletes the database and all dynamic data by calling the appropriate object's method delete.
After that, the system is ready to perform a new Create().

CVfsmSystem::AttachToMainWindow
void AttachToMainWindow (CWnd* pPar);

pPar Pointer to the parent (main) window.
Remarks Sets the Parent Window to the VFSM System in case the OS is WindowsNT. This is the

environment for the Host Client/Server connection.

VFSM System Class Library Reference 127

CVfsmSystem::ItemNumb
int ItemNumb (e_ItemTypes eItemType) ;

eItemType Specification of the item type (see VSYSTYP.H).
Remarks Returns the number of a specified item type currently available in the database.
Return Value Number of instances of the specified item type.

CVfsmSystem::FirstItem
CItem* FirstItem (e_ItemTypes eItemType, POSITION& pos);

eItemType Specification of the item type (see VSYSTYP.H).
pos Iterator

Remarks Returns the first item of a specified item type currently instanciated in the database.
Return Value Pointer to the first instances of the specified item type. NULL if not there.

CVfsmSystem::NextItem
CItem* NextItem (e_ItemTypes eItemType, POSITION& pos)

eItemType Specification of the item type (see VSYSTYP.H).
pos Iterator

Remarks Returns the next item of a specified item type currently instanciated in the database.
Return Value Pointer to the next instances of the specified item type. NULL if at the end of them.
See Also CVfsmSystem::FirstItem
Example CVfsmSystem* pVS = &(pDoc->m_VfsmSystem);

C_PAR* pPar;
POSITION pos;
 pPar = (C_PAR*)pVS->FirstItem (IT_PAR, pos);
 while (pPar != NULL)
 {
 // do something with the pPar object
 pPar = (C_PAR*)pVS->GetNextItem (IT_PAR, pos);
 }

CVfsmSystem::PollAdviseQueue
bool PollAdviseQueue(void);

Remarks This method has to be called at the Window's message loop idle time. It gets the advise
requests one by one from the advise queue and passes them to the Host PostAdvise() method.
If the queue is empty it does nothing.

Return Value true if an element was removed from the queue. false when the queue is empty.

C H A P T E R 8

Declarations

Declarations
All generally relevant declarations are in the file VSYSTYP.H.

VSYSTYP.H
This file is the declaration of all globally used enumeration and data structures in the VFSM
System. Many of them belong to a specific class. There are some rules to know:

• The tables showing states or commands of a certain item types have a row called Name. It
shows the string representation of the attribute ".StN" (state name).

• Enumeration values with _LAST or _Last are not really used, they serve only as limits in the
program code.

130 Declarations

enum e_ItemTypes
The enumeration represents the Real-time Database's item types. Type Name is the string
representation used, e.g. in the Configuration File, as an item type identifier.

Enumeration Num Type Name
IT_Item 0 Item
IT_VFSM 1 VFSM
IT_CMD 2 CMD
IT_TI 3 TI
IT_AL 4 AL
IT_DI 5 DI
IT_DO 6 DO
IT_NO 7 NO
IT_NI 8 NI
IT_SWIP 9 SWIP
IT_XDA 10 XDA
IT_PAR 11 PAR
IT_OFUN 12 OFUN
IT_STR 13 STR
IT_CNT 14 CNT
IT_DAT 15 DAT
IT_UNIT 16 UNIT
IT_ECNT 17 ECNT
IT_UDC 18 UDC
IT_TAB 19 TAB
IT_last 20 END

Declarations 131

enum e_ItemAttributes
This enumeration represents the summary of available attributes. A particular item type typically
uses only a subset of it. The following table shows all the attributes. Enumeration is the text used
in a C++ program, Number is the numeric representation for instance used in the TCP/IP host
communication, Attribute Name is the way attributes are mentioned in text and the abreviation
Short is the text used in the Host interface (TCP/IP or DDE) as extension to the item name (e.g.
"DI_DoorOPEN.Val).

Enumeration Number Attribute Name Short
IAtt_None 0 Value
IAtt_Value 1 Value Val
IAtt_ServiceMode 2 Service Mode SvM
IAtt_ServiceValue 3 Service Value SvV
IAtt_PeripheralValue 4 Peripheral Value PeV
IAtt_VI 5 Virtual Input VI
IAtt_StateName 6 State Name StN
IAtt_AssocItemList 7 Associated Item

List AIL
IAtt_TypeName 8 Type Name Typ
IAtt_CountConstant 9 Count Constant CnC
IAtt_CountRegister 10 Count Register CnR
IAtt_Category 11 Category Cat
IAtt_Format 12 Format Frm
IAtt_PhysicalUnit 13 Physical Unit Uni
IAtt_LimitLow 14 Limit Low LiL
IAtt_LimitHigh 15 Limit High LiH
IAtt_InitValue 16 Initital Value IVa
IAtt_DataValue 17 Data Value Dat
IAtt_Text 18 Text Txt
IAtt_Acknowledge 19 Acknowledge Ack
IAtt_Time 20 Time Tim
IAtt_ScaleFactor 21 Scale Factor ScF
IAtt_Offset 22 Offset Ofs
IAtt_ScaleMode 23 Scale Mode ScM
IAtt_List 24 List Lst
IAtt_PhysAddr 25 Physical Addr PAd
IAtt_CommPort 26 CommPort Com
IAtt_Trace 27 Trace Trc
IAtt_RunMode 28 Rune Mode RMo
IAtt_NextStep 29 Next Step NSt

132 Declarations

enum e_DATA_Formats
The enumeration represents the C_DAT item's data value format. Format Name is the string
representation in the C_DAT item's attribute "Frm".

e_DATA_Formats Num Format Name
DF_none 0 None
DF_BOOL 1 bool
DF_CHAR 2 char
DF_UCHAR 3 uchar
DF_INT 4 int
DF_UINT 5 uint
DF_LONG 6 long
DF_FLOAT 7 float
DF_STRING 8 string
DF_PTR 9 ptr
DF_PITEM 10 pItem
DF_LAST

union r_Universal
This data structure stores several data formats in the same 32Bit. It is used typically when working
with C_DAT item and CUniversal objects.

union r_Universal
{
 bool b;
 char ch;
 unsigned char uch;
 unsigned short un;
 short int n;
 long l;
 float f;
 void* ptr;
 CItem* pItem;
 CString* pst;
}; /* End of r_Universal */

Declarations 133

enum e_PAR_Categories
The enumeration represents the C_PAR item's category. Cat Name is the string representation in
the C_PAR item's attribute "Cat".

e_PAR_Categories Num Remark (stored in Registry) Category Name
PG_none 0 None
PG_EP 1 HKEY_CURRENT_USER as EP EP
PG_PP 2 not stored in Registry PP
PG_EP_LM_ADMIN 3 HKEY_LOCAL_MACHINE as EP_ADMIN EP_LM_ADMIN
PG_EP_LM_USERS 4 HKEY_LOCAL_MACHINE as EP_USERS EP_LM_USERS
PG_PP_Coded 5 not stored in Registry; value

set by IO-Handler Code PP_Coded
PG_Last 6

enum e_NIO_ScaleModes
The enumeration represents the C_NI and C_NO item's Scale Mode. Scale Name is the string
representation in the C_NI/O item's attribute "ScM".

e_NIO_ScaleModes Num Scale Name
SM_None 0 None
SM_Lin 1 Lin
SM_Log 2 Log
SM_Exp 3 Exp
SM_Sin 4 Sin (not used)
SM_ASin 5 ASin (not used)
SM_Last

enum e_UDC_Cmds
The enumeration represents the C_UDC item's command.

e_UDC_Cmds Num
UC_none 0
UC_Clear 1
UC_Up 2
UC_Down 3
UC_Last

134 Declarations

enum e_CNT_States, e_CNT_Cmds
The two enumerations represent the C_CNT and the derived item's state (internal value) and
command.

e_CNT_States Num Name
CS_none 0 none
CS_RESET 1 RESET
CS_STOP 2 STOP
CS_RUN 3 RUN
CS_OVER 4 OVER
CS_OVERSTOP 5 OVERSTOP
CS_LAST

e_CNT_Cmds Num
CC_none 0
CC_Reset 1
CC_Stop 2
CC_Start 3
CC_ResetStart 4
CC_IncCounter 5
CC_DecCounter 6
CC_NewCountConst7
CC_Last

Declarations 135

enum e_STR_States, e_STR_Cmds
The two enumerations represent the C_STR item's state (internal value) and command.

e_CNT_States Num Name
STS_none 0 none
STS_OFF 1 OFF
STS_INIT 2 INIT
STS_MATCH 3 MATCH
STS_NOMATCH 4 NOMATCH
STS_DEF 5 DEF
STS_ERROR ERROR
STS_LAST

e_CNT_Cmds Num
STC_none 0
STC_Off 1
STC_On 2
STC_Set 3
STC_NewInput 4
STC_NewRegExp 5
STC_NewSubStr 6
STC_Last

136 Declarations

enum e_SWIP_States, e_SWIP_Cmds
The two enumerations represent the C_SWIP item's state (internal value) and command.

e_SWIP_States Num Name
SS_none 0 none
SS_OFF 1 OFF
SS_LOW 2 LOW
SS_IN 3 IN
SS_HIGH 4 HIGH
SS_LAST

e_SWIP_Cmds Nu
m

SC_none 0
SC_Off 1
SC_On 2
SC_NewLimitLow 3
SC_NewLimitHigh 4
SC_NewInput 5
SC_Last

138 Declarations

enum e_ALA_States, e_ALA_Cmds
The two enumerations represent the C_AL item's state (internal value) and command.

e_ALA_States Num Name
AS_NONE 0 none
AS_COMING 1 COMING
AS_GOING 2 GOING
AS_STAYING 3 STAYING
AS_ACKNOWLEDGE 4 ACK
AS_COM_GO 5 COM_GO
AS_LAST

e_ALA_Cmds Num
AC_None 0
AC_Coming 1
AC_Going 2
AC_Staying 3
AC_Acknowledge 4
AC_Cancel 5
AC_Last

Declarations 139

enum e_DATA_States, e_DATA_Cmds
The two enumerations represent the C_DAT item's state (internal value) and command.

e_DATA_States Num Name
DS_OFF 0 OFF
DS_UNDEF 1 UNDEF
DS_DEF 2 DEF
DS_CHANGED 3 CHANGED
DS_INIT 4 INIT
DS_SET 5 SET
DS_LAST

e_DATA_Cmds Num
DC_none 0
DC_Off 1
DC_On 2
DC_Set 3
DC_NewData 4
DC_Last 5

Index

 GetCommPort 118
 GetItemNumb 86
 IsSmallerThan 122
 Receive 106
AddDependent 64
AttachToMainWindow 128
Attributes 42
bGetData 76, 121
C_CNT 70
C_DAT 72
C_DI 79
C_DO 81
C_ECNT 84
C_UDC 116
ChangedOn 89
chGetData 76, 121
CIO_Unit 17, 20, 87
Connect 82, 88
CopyConvert 121
Create 88
CS_xxx 70
CTimeBase 12
Database Items 45
Database Manager 43
DDE Interface 55
DF_xxx 134
Disconnect 64, 67, 82, 95
Display 121
DS_xxx 93
e_ALA_Cmds 140
e_ALA_States 140
e_CNT_Cmds 136
e_CNT_States 136
e_DATA_Cmds 141
e_DATA_Formats 134
e_DATA_States 141
e_ItemAttributes 133
e_ItemTypes 132
e_NIO_ScaleModes 135
e_PAR_Categories 135
e_STR_Cmds 137
e_STR_States 137
e_SWIP_Cmds 138
e_SWIP_States 138
fGetData 76, 121
GetAssItem 89, 119, 124
GetAttr 64
GetAttrName 63
GetBody 106
GetCommPort 88
GetCountConst 71
GetCountRegister 71
GetData 62, 75
GetFirst 85
GetFormat 74, 121
GetInitValue 98
GetItemType 63
GetItemTypeName 63

GetLimitHigh 99, 114
GetLimitLow 98, 114
GetMessageSize 105, 107
GetName 62
GetNext 86
GetNumbAssItem 89, 118, 124
GetPhysicalAddress 88, 118
GetState 124
GetThreshold” 76, 92
GetType 63
GetTypeName 63
GetUnit 74
GetUnitName 88
GetUnitTypeName 88, 118, 124
GetValue 62, 74, 80, 82
IAtt_xxx 45
Init Registry 101
Init RegistryConf 103
IO Unit Poll Thread 26
IsGreaterThan 122
IT_xxx 132
ItemNumb 129
lGetData 76, 121
Link Types 56
Lookup 85
nGetData 76, 121
OFUN.H 36
PG_xxx 135
pItemList 76, 89
PollAdviseQueue 129
pstBody 108
pstGetData 76
pUnit 89
Query Registry 102
Query RegistryConf 103
r_Universal 134
Real-time Database 5
RemoveAll 128
ResetValue 124
Scale Mode 91
Send 107
SendLdt 108
SendUnic 107
Set 121
Set Registry 102
Set RegistryConf 103
SetCountConst 71
SetData 75, 94, 121
SetInput 91
SetLimitHigh 77, 80, 82, 99, 113
SetLimitLow 76, 99, 113
SetLimits 113
SetOutput 18, 31, 89
SetValue 62, 80, 82
SM_xxx 135
STC_xxx 109
stGetData 76
stGetFormat 122

142 Index

String Constants 57
StringRes.exe translation program 57
stringres.src file 57
TCP/IP Client 52
TCP/IP Interface 46
UC_xxx 116
uchGetData 76, 121
unGetData 76, 121
vsala.h 66
vscmd.h 68
vscnt.h 70
vsdata.h 74
vsdi.h 79
vsdo.h 81
vsecnt.h 84
vsil.h 85
vsiou.h 87

vsitem.h 61
vsmequ.h 101, 103, 105
vsni.h 91
vsofu.h 97
vspar.h 98
vsswip.h 110, 112
vstab.h 115
vstim.h 116
vsudc.h 116
vsuni.h 120
vsunit.h 118
vsvfsm.h 123
vswin.h 128
VSWIN.LIB 16
vsxda.h 126
xGetData 76, 94

	Introduction
	Intended Audience
	Document Conventions

	The VFSM System Class Library
	Real-time Database Management
	RTDB General Items
	RTDB IO-Items
	Accessories to the RTDB Items
	Map of the Class Library

	Integration of the VFSM System into a Win32 Application
	Where to place the VFSM System
	Place the database
	StateWORKS Studio generated files
	Load the Configuration File
	Attach to System Timer
	Attach to Windows Queue
	Destruct the VFSM System

	The RTDB Layer Model
	Input Events
	Output Events
	Event Control Flow
	VFSM Control Flow

	Libraries

	Writing IO-Handlers
	Connection to the IO-Hardware
	Connection to the Input Hardware
	Connection to the Output Hardware

	Connection to the Database
	The Classes of IO-Handler and C_UNIT
	How to write IO-Handlers

	System Startup Phase
	System Shutdown
	Input-Type IO-Handler
	Input Handlers

	Output-Type IO-Handler
	Output Handlers
	Connect the Output Items to an Output Handler
	Output Item to Output-Handler
	Output-Handler to IO-Hardware

	User Written Output Functions
	Output Functions embedded in the VFSM System
	System Startup Phase
	Create
	Connect

	Output Functions at Runtime
	Output Functions at System Shutdown
	Writing the Output Function Code
	Adding the Output Function to the Directory
	Example

	The Host Interface to the RTDB
	Introduction
	Attributes

	Database Manager
	Database Configuration
	Database Contents
	Alarm Handler
	Item Trace

	Database Items
	TCP/IP Interface
	Architecture
	Establish Connection
	Message Packet
	Message Type
	Scenarios
	Interplatform Connection

	TCP/IP Client
	Dll functions

	DDE Interface
	Name and Topic
	Item
	Link Types
	Data Types

	Internationalization Support
	VFSM System Class Library Reference
	class Citem
	Runtime Virtual Public Members
	General Static Members
	Member Functions

	class C_AL : public CItem
	Runtime Virtual Public Members
	Member Functions
	Host Interface

	class C_CMD : public CItem
	Command Names
	Runtime Virtual Public Members
	Member Functions
	Host Interface

	class C_CNT : public CItem
	Runtime Virtual Public Members
	Member Functions
	Host Interface

	class C_DAT : public CItem
	Runtime Public Members
	Member Functions
	Host Interface

	class C_DI : public CItem
	Runtime Virtual Public Members
	Member Functions
	Host Interface

	class C_DO : public CItem
	Initialization - Virtual Public Members
	Runtime Virtual Public Members
	Member Functions
	Host Interface

	class C_ECNT : public C_CNT
	class CItemList
	Initialization - Public Members
	Member Functions

	class CIO_Handler
	Construction/Destruction - Public Members
	Initialization - Virtual Public Members
	Initialization - Public Members
	Runtime Virtual Public Members
	Member Functions

	class C_NI : public C_DAT
	Runtime Virtual Public Members
	Member Functions
	Host Interface

	class C_NO : public C_DAT
	Runtime Virtual Public Members
	Runtime Public Members
	Member Functions
	Host Interface

	class C_OFUN : public CItem
	Host Interface

	class C_PAR : public C_DAT
	Runtime Public Members
	Member Functions
	Host Interface

	Class CRegistry
	Runtime Public members
	Member functions

	Class CRegistryConf
	Runtime Public members
	Member functions

	class CQueueReceiver
	Initialization - Public Members
	Runtime Public Members
	Member Functions

	class CQueueSender
	Initialization - Public Members
	Runtime Public Members
	Member Functions

	class C_STR: public CItem
	Supported Regular Expressions
	Runtime - Virtual Public Members
	Member Functions
	Host Interface

	class C_SWIP : public CItem
	Runtime - Virtual Public Members
	Runtime - Public Members
	Member Functions
	Host Interface

	class C_TAB : public CItem
	Runtime Virtual Public Members
	Member Functions
	Host Interface

	class C_TI : public C_CNT
	Host Interface

	class C_UDC : public C_DAT
	Runtime - Virtual Public Members
	Member Functions
	Host Interface

	class C_UNIT : public CItem
	Public Members
	Member Functions
	Host Interface

	class CUniversal
	Initialization - Virtual Public Members
	Runtime - Public Members
	Data - Public Members
	Member Functions

	class C_VFSM : public CItem
	Runtime Virtual Public Members
	Member Functions
	Host Interface

	class C_XDA : public CItem
	Runtime - Virtual Public Members
	Member Functions
	Host Interface

	class CVfsmSystem
	Initialization - Public Members
	Member Functions

	Declarations
	VSYSTYP.H

	Index

