
StateWORKSStateWORKS

Specifying RTDB (execution environment) -
Tutorial

Introduction Introduction

The tutorial teaches you how to specify the RTDB which is
the base of any StateWORKS application.
We assume that you know about the specification of a virtu-
al finite state machine (see [5]) and about the specification
of a system of virtual finite state machines (see [6]).

The result of the RTDB specification is a set of files that may
be read by a StateWORKS run-time system.
To test the specified system you may use the SWLab and
Monitors available in StateWORKS Studio under the menu
Tools.

What is this process for? What is this process for?

A very powerful feature of the StateWORKS concept is the
way state machines (VFSM objects), once they are
designed, can be used, in several instances, in a project and
can also be taken over to new projects very easily.

All state machines (VFSM) are designed to function in a
"virtual environment", and you now need to learn how to
configure them to run them in the real environment, using
the RTDB. For this, the project window is used.

The VFSM you have designed - and in fact each instance of
any such design – must be placed in your project and linked
to the real input-output signals, commands, etc. which will
be used.

Introduction Introduction

The tutorial uses the project Pumps from the book [1] to
illustrate the design steps. In the book you find detailed
requirements and analysis of the control task.

For the purpose of this tutorial some partial specifications
are provided which may be loaded to accelerate the training
(observe corresponding notes).

Terminology Terminology

Always (table)
A table used for specification of combinational systems or Input actions valid for all states
Entry action
An Output name describing an action performed by entering a state
Exit action (written also as eXit action)
An Output name describing an action performed by exiting a state
Id name
A name of an object
I/O Object Dictionary
A list of all defined objects
I/O Object Id
see: Id name
Init (flag)
A flag: if marked instructs the execution system (RTDB) to initialize the virtual input to that
value
Init (state)
A default state which cannot be deleted but can be renamed
Input
see: Input Name
Input (tab)
see: Input Name Dictionary
Input action
An Output name describing action performed if an Input action condition is due

Terminology Terminology

Input action condition
A condition defined using Input names linked by AND and OR operators
Input action expression
Input action condition and Input action
Input action priority
The sequence of Input action expressions in the ST table; used for documentation purpose
Input Name
A name of a control condition (defined on an Input Value)
Input Name Dictionary
A list of all defined Input Names
Input Value
Object input value
MyCmd
A default Input Name of a type CMD which cannot be deleted but can be renamed
Next State priority
The sequence of state transitions in the ST table; determines the execution sequence
Operators: AND (&), OR (|)
Boolean operators
Output
see: Output Name
Output (tab)
see: Output Name Dictionary
Output Name
A name describing an action (defined on an Output Value)

Terminology Terminology

Output Name Dictionary
A list of all defined Output Names
Output Value
An Object output value
Prefix
A VFSM specific prefix used in h-files generated for each VFSM
ST diagram
A state transition diagram used for graphic presentation of a state machine behavior
ST table
A state transition table used for detailed specification of a state.
State
see: State Name (drawn as a circle on the ST diagram)
State Name
A state name
State Name Dictionary
A list of all defined State Names
Transition
A transition between two states (drawn as an arrow on the ST diagram)
Transition condition
A condition defined using Input names linked by AND and OR operators
Transition expression
Next state and Transition condition

Creating a VFSM objectCreating a VFSM object

Note: The text below applies to figures on the next slide.
Most of this work is carried out in the project window.
Expand the tree VFSM in the Project pane Object type.
Select an object type, for instance Pressure.
Clicking on the button New.. create a VFSM object in the
pane Object Name. The object gets the default name
Pressure1.
You may edit the object name in the Property window which
opens automatically by creating or selecting the object.
You will define all Properties of the VFSM object later when
all required objects are created. At that moment you may
define the name and prepare the Description (Text and
Link).

Creating a VFSM objectCreating a VFSM object

Creating a VFSM objectCreating a VFSM object

Similarly, create other required state machines: Main,
Device1, Pressure1 and Pressure2.
You may control the progress by opening the ST diagram
(shape the diagram according to your preference).

Creating a CMD objectCreating a CMD object

Selecting any state machine, you see in the Property
window a list of all its objects.
Start creating objects, for instance MyCmd for Pressure1.
Expand the tree Interface in the pane Object type.
Select the type Cmd and create the object Cmd:01 by
clicking on the button New...

Creating a CMD objectCreating a CMD object

Define properties of the newly created object in the
Property window:

Give the object a more expressive name, for instance
Cmd:Pressure1.
Fill the property Type with the name of the state machine
type; in that case Pressure (case not sensitive).

Creating a CMD objectCreating a CMD object

Similarly, create command objects for all state machines.
You may use the button New.. or Duplicate.
You may Delete at any time an existing object if it is not
used by other objects (try commands Where used and
Mark not used in the menu opened by the right mouse click
in the pane Object Name.

Creating a TI objectCreating a TI object

The Pressure1, Pressure2 and Device1 need timers;
thus you have to create 3 objects of type Ti.
Select the type Counter / Ti in the pane Object type.

Creating a TI objectCreating a TI object

Create the object Ti:01 in the pane Object Name and edit
its properties in the Property window.
Accepting for instance the By Value=True and defining the
timeout (Const value=100) and the Clock=100ms you get
a timer Pressure1:Ti for the state machine Pressure1.

Creating a TI objectCreating a TI object

Similarly you define a timer for the state machine Pressure2
with the Const value=80 and a timer for the state machine
Device1 with the Const value=120: other properties are the
same.

Creating a TI objectCreating a TI object

Choosing Const value=False you have to define a source
of the timeout value (Object Name); it may be an object of
type PAR, NI or DAT. As a rule such an object is not owned
by a state machine; it is just a parameter of another object.
Create a required object, for instance PAR and complete the
Ti properties.
The same procedure must be applied to other objects like
for instance SWIP, CNT, etc.

Creating RTDB objectsCreating RTDB objects

creation of RTDB objects until
you define all objects
required by the application.

Creating RTDB objectsCreating RTDB objects

Now you can finish the definition of state machine properties.
Select for instance the state machine Pressure1 in the pane
Object Name, select the property Ti in the Property window
and open the list of timers in the system.
Clicking on Pressure1:Ti define a timer for the Pressure1.

Creating RTDB objectsCreating RTDB objects

Eventually, you get all properties for a state machine
Pressure1 as shown below.
Similarly, you define properties for all state machines in the
system.

SMS diagramSMS diagram

If you create objects required by all state machines
(Device1, Pressure1, Pressure2, Main) you get the system
of state machines as shown in the SMS diagram below.
Note: load Pumps.prj from the Pumps_Tutorial folder.
You may test the system using SWLab and StateWORKS
monitors but you will notice that it does not work correctly
(missing access to output functions).

Creating UNIT objectCreating UNIT object

The RTDB objects created so far can be accessed via
TCP/IP; you do it for instance using StateWORKS Monitors.
The TCP/IP access is mainly intended for a user interface.
But you may define an I/O interface which requires to have
specific I/O handlers in the run-time system. SWLab has
such an I/O Handler to simulate digital / analog inputs and
outputs available on the SWLab user interface in the form of
switches, LEDs, potentiometers and gauges.
In the following part you will use predefined UNIT types for
creation of UNIT objects required by the SWLab I/O
Handler.
In addition you need a UNIT which represents the interface
for the user function called by objects of type OFUN.

Creating UNIT objectCreating UNIT object

(Using the button Add in the dialog window opened by
Project / Edit), add UNIT types: DI8, DO8, NI4, NO4 and
OfuLimit to the project

Creating UNIT objectCreating UNIT object

Create UNIT objects for each I/O type.
Create 2 objects of type OfuLimit: one for each state
machine of type Pressure.

Creating UNIT objectCreating UNIT object

In principle, a UNIT is a list of objects. In addition to
standard properties (Name, Description), it has also two
specific properties: Phys Address and Comm Port.
Specifying the UNIT object list you have to decide which
elements of SWLab will be used for the project Pumps.

Creating UNIT objectCreating UNIT object

For instance for the DI-UNIT, you may choose object as
shown below.
Note the value 1 chosen for the Phys Address. It is
required by the run-time system. Similarly, the DO-UNIT
requires the value 3, NI – the value 5 and NO – the value 7.

Creating UNIT objectCreating UNIT object

Below you see values chosen for UNITs of type OfuLimit.
To interpret them you have to know the requirements of the
OfuLimit function used by the state machines of type
Pressure.
The values of properties Phys Address and Comm Port
are irrelevant in that case.

System completeSystem complete

Note: load Pumps.prj from the Pumps folder.
Now you have a complete system Pumps which is able to
use the User functions for calculating of SWIP limits as well
as SWLab I/O interface. The SMS diagram of the Pumps
system is shown below and the SWLab on the next slide.

System completeSystem complete

ReferencesReferences

[1] Wagner F., et al., Modeling Software with Finite State
 Machines: A Practical Approach. Taylor & Francis CRC Press, 2006.

[2] StateWORKS Studio Help.
[3] StateWORKS Development Tools: User’s Guide & Training Manual.

 SW Software 2005.
[4] www.stateworks.com - Technical Notes.
[5] StateWORKS: Specifying a state machine – Tutorial.
[6] StateWORKS: Specifying a system of state machines - Tutorial.

http://www.stateworks.com/

