
F. Wagner September 2006

Event driven state machines

Introduction

In our book [1] we have discussed among other topics the misunderstandings about state machines.
One of the topics which has to be developed is the event driven idea while designing state machines.
This technical note summarizes the problem using simple examples.

We have introduced two types of state machines: Parser and Controller. The Parser type is a state
machine whose inputs are true events, i.e. they are used to trigger an (input) action or to change a
state and thereafter they are consumed. All information represented by the event has to be stored in
states. These type of state machines are used for instance in telecommunication for protocol
definition. The Controller type of a state machine uses input signals which are of different flavours
depending on their origin. Some inputs are static and exhibit always a value, for instance a digital
input can be HIGH, TRUE or UNKNOWN. Other inputs may have a limited life time and it is the
task of a designer to define the moment when their value is to be consumed. Most of the state
machines used in the industrial control domain are of the Controller type.

Life-time of control signals
The life-time problem of control signals as well as the life-time of actions in event driven system
has been discussed in a previous technical note [2]. To remind we show a simple example Lifetime
which contains all elements of the topic (Figure 1, Figure 2, Figure 3). We want to repeat an action
Send triggered by the command Cmd_Do. The state machine with two states: Idle and Do does the
task.

Figure 1: State transition diagram of the state machine Lifetime

The command Cmd_Do forces the transition from the state Idle to Do. The state machine returns to
the state Idle receiving the acknowledgement Ack.

Figure 2: Lifetime – the state transition table of the state Do

On entering the state Do the command is cleared (thus being ready for repetition) and the required
action (Send) is performed.

On entering the state Idle both signals: the Action and Ack are cleared and are ready for repetition
(the Action may be for instance a command to the IO-Handler).

Figure 3: Lifetime – the state transition table of the state Idle

Pure event driven

There are systems in which input signals are events per definition. In this case we may simplify
handling of the input signals: instead of defining in each situation the signal's life-time we do it in
one place. This technique will be illustrated by the state machine AllEvents (see Figure 4).

Figure 4: The state transition diagram of the state machine
AllEvents

The state machine has two inputs Input1 and Input2. Input1 generates two control values: GoToA
and GoToB, Input2 generates a control value Return. If the state machine is in the state Init (see
Figure 5) it goes either to StateA or to StateB depending on the value of the Input1.

Figure 5: AllEvents - the state transition table of the state Init

Receiving the input Return in the StateA (see Figure 6) the state machine returns to the state Init. It
behaves similarly in StateB. Without clearing the input signals in some way the state machine will
loop, or oscillate, thereafter because on returning to the state Idle it will be forced by a signal
GoToA (or GoToB) to go immediately to the StateA (or StateB) where it will find the signal Return,
and so on.

Figure 6: AllEvents - the state transition table of the StateA

Instead of clearing the input signals separately in each state we may do it in the section Always
input actions (see Figure 7) where signals: GoToA and GoToB generated by the Input1 clear the
Input1 and the signal Return clears the Input2. We may also use a single general clear signal which
clears both events triggered by any input signal.

Figure 7: AllEvents - the Always input actions

Why must we make life difficult?

Let's recollect some basic principles. A state machine models a behaviour of a control task. It does it
by changing states according to input changes. A state machine generates output actions. A state
represents the history of all input changes (in a condensed form). Other interpretations are a sin,
especially a state should not be used to store the present input value.

Using the Parser type of a state machine we are forced to use states for storing input values. Let's
look at the state machines shown in Figure 8 and Figure 9. The state machine is to make a transition
from the state Idle to Done if both inputs arrive: Event1 and Event2. In the Parser type solution we
use states: Storing1 and Storing2 to store the inputs. If we need to do nothing in those states the
solution is probably not optimal as there is no reasonable excuse for using states Storing1 and
Storing2.

 In the Controller type solution the input values are stored (in StateWORKS as a virtual input) and
will be cleared if not relevant any more (for instance in the state Done). In effect, the Controller type
state machine does not need auxiliary states for storing inputs and the transition from Idle to Done is
performed if both events arrive.

Figure 8: The state transition diagram of the state machine Parser

Figure 9: The state transition diagram of the state machine
Controller

Conclusions
We should avoid using the Parser type of state machine. Parser type state machine does not allow to
use complex transition condition as at any time there is only one input available: the present event.
Other control information has to be stored as states that unavoidably leads to a state explosion.
Parser state machine should be used if the specification of the inputs indicates clearly that the inputs

are used to trigger an action or a transition and loose their meaning after that.

StateWORKS allows definition and implementation of both types of state machines: Parser and
Controller. The basic storing mechanism in a form of the virtual input is constructed for static input
signals. The designer decides about the life-time of the input signals. In extreme cases a designer
may use a pure Parser model consuming all input signals by clearing them in the Always input
actions.

References
[1] Wagner, F. et al., Modeling Software with Finite State Machines – A Practical Approach,
Auerbach Publications, New York, 2006.

[2] Technical Note: TN16-Life-time-and-events.pdf. May 2006.

	Event driven state machines
	Introduction
	Life-time of control signals
	Pure event driven
	Why must we make life difficult?
	Conclusions
	References

