
F. Wagner February 2009

Break States in the VFSM Executor

Introduction
We sometimes encounter the necessity for an explicit break of the VFSM Executor when

specifying a state machine to be realized by a StateWORKS run-time system. To discuss the
problem let's have a look at the flow chart in Figure 1 showing the VFSM execution model.

Figure 1: VFSM execution model

This basic assumption of the VFSM state machine model is to work in the execution loop using a
copy of the initial virtual input (VI) as it is when entering the loop. The flowchart shows also that
the VFSM executor performs all the valid state transitions it finds while entering the consecutive
states, in one sequence. The Executor stays in the loop: transition condition – execute exit actions –
change state – execute entry actions until there are no more transitions due, i.e. all transition
conditions become false. Thus, several transitions might be performed in a state machine, almost
instantaneously. This can, in some cases, cause an indefinite loop between a state which issues a
command and the state which acknowledges it, as discussed in the next section by means of a
simple example. The VFSM Executor is guarded against this failure by breaking the loop after
certain number (default: 10) of passes in the loop.

Whenever we encounter such a problem we can always find some workaround that bypasses the
difficulty, usually by adding extra states. StateWORKS now offers an elegant solution in a form of
a Break property assignable to any state, and for brevity we shall refer to these as “Break states”.

1/6

Break state
The use of the Break state can be illustrated with a simple example which repeats an action, each

time it is stimulated by a command. The command, which we call CmdRepeat, should change the
state from Init to Repeat. In the state Repeat something is done and the system should then return to
the state Init. That action can be repeated many times.

A bad solution is shown in Figure 2. On receiving the CmdRepeat the state machine goes to the
state Repeat (see the state transition table in Figure 3) where it does something and returns
immediately to the state Init. In spite of clearing the command the state machine stays in the loop as
it still uses the original virtual input with the CmdRepeat. The VFSM Executor terminates the loop
supervising the number of transitions. Note that the DoSomething output will be performed only
once as the output value does not change. Thus, in effect the required behavior has been achieved
but in a very inelegant way.

Figure 3: Repeat: the bad state transition table of the state Repeat

An alternative solution is to define a state as a Break state. Executing the Break state the VFSM
Executor does not follow the execution path shown in Figure 1 but it breaks it after the first state
transition, returning to the wait for VI change point. A state is marked as a Break one by a prefix
B which is reserved for that purpose.

Figure 4 Shows the previous state machine using the Break state. In that case the state _B_Repeat
has the Break feature. On entering the state _B_Repeat the DoSomething action is carried out and
the command is cleared. Although the state machine leaves the execution path after this state
transition it enters the execution path again, being triggered by the event Cmd0 (command cleared).
It returns then to the state Init where it waits for another CmdRepeat.

2/6

Figure 2: Repeat: the bad state transition diagram

Figure 4: Repeat: The correct state transition diagram using a
Break state _B_Repeat

Figure 5: Repeat: the state transition table of the state _B_Repeat

Pulse generator example
We show another example of a state machine which requires the Break functionality. It is a pulse

generator that is to oscillate continuously between two states with a frequency determined by a
Timer timeout. Figure 6 shows the first possible but bad concept.

Figure 6: Pulse generator: the bad state transition diagram

The generation begins with the command Start and is terminated by the command Stop. The state
machine should oscillate between states PulseOff and PulseOn: setting a digital output to High in
the state PulseOn and to Low in the states PulseOff will realize the pulse generator.

3/6

Figure 7: PulseGenerator - the bad state transition table of the state PulseOff

According to the state transition table in Figure 7 on entering the state PulseOff a timer is started
and if the timer elapses the state machine goes to the state PulseOn. If a similar state transition table
is specified for the state PulseOn (see Figure 8) the state machine will oscillate a few times between
these two states: not at the frequency defined by the timer but at a much higher frequency
determined by the system features. Then it waits in the state PulseOff for another timeout. Thus, we
get an incorrect behavior.

Figure 8: PulseGenerator - the bad state transition table of the state PulseOn

Using a Break state

Figure 9: PulseGenerator: The correct state transition diagram using Break states

To make the system function according to our wishes, we use a Break state as shown in Figure
9. In that case both states On and Off have the Break feature. The state transition diagrams as well
as the state transition tables of the “bad solution” (see Figure 6 and Figure 7) and the solution using
Break states are the same. In the latter case the correct behavior is achieved by changing the

4/6

execution path of the VFSM Executor, as described below..

We would like to mention in passing that the break problem does not arise if we use two timers:
one in the state PulseOn and another one in the state PulseOff. This will be a possible workaround if
we do not use the Break facilities offered by the StateWORKS development environment. It is fully
correct but requires two timers instead of a one. This solution would be anyway required if we want
to have a different cycle length for Off and On states.

Effects on the VFSM execution models
Using ready-made run-time systems like RTDB based applications we have to take into account

the execution model of the system. The VFSM Execution model as shown in Figure 1 allows
several state transitions to be triggered by a single event. This feature has a side effect in situations
discussed in the technical note. StateWORKS Studio offers solutions: a Break state as a standard
technique to be used while specifying a state machine. Figure 10 shows the revised flowchart of the
VFSM Executor, capable of breaking the execution path.

Figure 10: VFSM execution model with the Break feature

5/6

Conclusions
The solutions for (rare) cases of the breaking problem as presented in the technical note seem to

be optimal. If required we may use the Break state.

In order to use Break states we changed intentionally the execution logic of the VFSM Executor.

The obligatory prefix to the state name signals this specific point in the specification. This self-
documenting feature is very important and is in line with the StateWORKS specification
philosophy: the specification has to show all details so as to make behavior as understandable as
possible. The aspect is a “must” in any software which needs to stay maintainable.

References
[1] Wagner, F. et al., Modeling Software with Finite State Machines – A Practical Approach,
Auerbach Publications, New York, 2006.

6/6

	Break States in the VFSM Executor
	Introduction
	Break state
	Pulse generator example
	Using a Break state

	Effects on the VFSM execution models
	Conclusions
	References

