
F. Wagner April 2003

Hierarchical systems of state machines

System of state machines
A single state machine can control a relatively simple application task, for instance a motor. The
limit is the size (number of states) which a designer can effectively develop and understand.
There is no fixed maximum number of states that a manageable state machine should not
exceed. The maximum number of states depends on several factors, like for instance: the
chosen state machine model or complexity of the application. In practice, the maximum number
of states is between 30 and 100.

Normally, applications have several tasks to control. In practice, the tasks are not controlled
independently – they form a system in which the parts interact. Thus, to master such an
application we partition the control among several state machines. We need to know how to
organize such a system. Should it be totally free system of loosely coupled state machines or
should it have a strict organization? Though there is no ultimate answer to this question we
know from experience that a complex system requires an organization. A lesson from software
development is that trivial problems are not problems – any solution will do, even spaghetti
code - but the difficulties encountered in development of complex systems cannot be solved by
ad-hoc solutions. They require a well thought-out approach that allows the entire system be
partitioned into several subsystems which communicate smoothly among themselves. This
consideration is the basis of the StateWORKS approach to the problem, which recommends a
hierarchical system of state machines.

The discussion of a (hierarchical) system of state machines should cover several topics: the
theoretical model, communication among state machines, design procedure. In this note we will
focus on the two last questions leaving the first one for more academic discussion.

Master/Slave interface
The basis of a system of state machines is the communication among them. In the literature,
we find many software structure oriented discussions which concentrate mostly on event driven
systems or message passing mechanisms. Using StateWORKS we do not need to care about
this level of implementation; we may discuss the problem on a purely logical level – how to
organize the interface among state machines.

The question is: what kind of information should state machines exchange? If state machines
exchange data, than they would require a message as the information carrier. The data in the
message body would contain also control information. The VFSM concept of StateWORKS is
based on a total separation between data and control flow, which means that there is no use for
data exchange among state machines. State machines exchange only control information.

We recommend a Command (CMD object) / State (VFSM object) interface between state
machines. A relation between two state machines is a Master – Slave one: the Master sends a
command to the Slave and uses the Slave’s states as inputs (see the following diagram). The
command is just a code number which defines a request for a state machine, such as: Start,
Stop, Go, etc. (the command names correspond to command numbers).

The realization of the Master/Slave interface requires an additional object1 which passes the
command from Master to Slave. One state machine (the Master) sets the value of the
command as an output action; the destination state machine (the Slave) uses this value to
define input names used for control. There are very few objects that could be used as interface
elements, the most obvious being CMD and XDA (a general-purpose read/write data object).

1 The StateWORKS implementation of the VFSM concept defines a family of objects (organized in a real time data base)
where control properties are used to specify the behavior. An object can be used as an interface element if it is both: an
output and an input object.

It is reasonably clear why a state of a Slave state machine should be used as an input for the
Master state machine: the state represents the full control information about the situation in the
Slave. The question of whether to use a state of Master in a Slave must be answered
negatively: we should not do it. First of all, it would not be a Master-Slave relation anymore. The
second more important reason is that in using commands the Master is very flexible in definition
of requests: it may use the same command in different states or it may generate several
commands in the same state. The Master – Slave relation means that Master commands the
Slave to do something and supervises the Slave by watching its state: if the Slave reaches a
certain state the Master can assume that its command has been carried out. This definition is
based on the principle that a state of the state machine represents the entire control situation as
covered by this particular state machine.

What about other objects? Theoretically, we can use any object with input and output functions
as an interface among state machines. For instance, we can start a timer in one state machine
and use the timer status OVER in another state machine as an input signal. This kind of
interface may sometimes be needed but it should not be overused. As an exception it can be
tolerated but we should not build state machine systems with this kind of interface as a rule.
Eventually, we want to understand the system behavior – the more standard is the interface the
easier it is to understand. Any special tricks are liable to introduce chaos in software2. The only
object that could be treated as an alternative to the CMD object is the XDA object. The value of
this solution is discussed in the next section.

CMD or XDA
In StateWORKS the CMD object type should be used as a primary interface between two state
machines: Master sends commands to Slave(s). An XDA object is similar to CMD: it is a
number which can be set as an output action and used to define input signals (names), i.e. one
state machine (Master) can set the number and the other state machine (Slave) can use it as
an input signal. There are also differences between these two object types.

The CMD object has been intended as an interface object and has several features which
make its usage comfortable:

- it can be given different type names in Slave (CMD-IN) and Master (CMD-OUT),

2 It is a general software problem: most of us agree that in programming we should follow some rules, use methods,
specify (or at least understand) the problem before we start programming, and so on. The theory is full of such golden
rules and recommendations. Unfortunately, reality is not so tidy, and very often catastrophic. The main reason is that
when programming very often we want to solve a small difficulty in a code by by-passing the rules, using some dirty trick.
In this very moment we think that this one deviation from some rules, standards etc cannot do any harm. The
consequence is well known: excessive use of such tricks leads to poor software quality, software which is difficult to
understand and manage and sometimes even unacceptable or unusable.

State Command

Master

Slave

- the Slave CMD input names are accessible (displayed) while designing the Master state
machine,

- the Slave CMD input names are accessible in the execution environment and can be
displayed, for instance on the operator panel.

The XDA object is very simple and was essentially provided for handshaking between state
machines and I/O units (actions that cause some changes in the outside world via the I/O unit
must be acknowledged in the I/O unit). The XDA object has one interesting feature, namely it
can be set in any state machine; it is “symmetrical” and not “uni-directional” as is a CMD object.
In some situations this feature could be interesting. The consequences of the XDA usage and a
more detailed comparison with a CMD object will be discussed in a future note.

Design procedure
Of course, the Master/Slave interface between state machines does not dictate a hierarchical
structure; it can be used in any system of state machines for exchange of control signals.

The recommendation to use a hierarchy of state machines is based on experience and some
suggestions of a theoretical nature. When designing state machines we can make logical errors
which result for instance in infinite loops or deadlocks. The more state machines are in the
system, the higher is the probability of such errors and finding of those errors is more difficult.
Imagine a system of 100 state machines where each state machine may send a command to
any other state machine and uses states of any state machine for definition of its behavior. It is
very difficult to understand how such a system truly behaves and a structure of such a system
corresponds to non-structured software.

In contrast to a non-structured system a hierarchical system is easier to design and understand
as in its design or debugging we usually solve several local problems: Master and its Slaves
(see the following diagram).

The diagram shows a hierarchical system with 3 levels: the upper level containing a single
Master state machine (Main), the second level containing two state machines and the third,
lowest level with 6 state machines. A design of any state machine requires always an analysis
of a limited part of the system. A design of the Motor1 state machine covers the outside signals
and commands from the Transport state machine. While designing the Transport state machine
we are interested only in the states of state machines Motor1 and Motor2 and commands from
the Main state machine. While designing the Main state machine we take into account only
states of its Slaves (Transport, etc.). In a correctly designed hierarchical system any state
machine “sees” only the states of its slaves which represent an abstracted but all the same

Main

Motor2 Motor1

Transport

complete set of the control signals which are relevant for the state machine. The only state
machines that “communicate” with the outside signals are the Main state machine and the state
machines on the lowest hierarchy level.

A hierarchical system allows us to think locally in designing state machines, seeing only the few
involved state machines (Master and its Slaves) in an abstract way. For instance, the Transport
state machine has no idea about the details of the Motor control (inputs, outputs, delays,
timeouts, parameters, etc.), it sees only the (abstract) situation in motor control, represented by
the Motor state.

The other problem is how we should proceed in the design of a state machine system. Also in
this case there is no strict rule but it is obvious that we have to start where the information is
more or less complete. As a rule we have relatively good information about the behavior
required of the state machines on the lowest level: how to control peripheral devices. We
probably also know about commands for the Main state machine but unfortunately we do not
know much about its Slaves. Therefore, in most cases the only reasonable way is to start with
the lowest level of state machines. Having this layer ready we get some idea how to organize
the Master layer above it. So, we continue until we reach the Main state machine.

The next question is the design of the hierarchy: how many layers and which state machines.
There are some fixed points, for instance we need a Main state machine at the top and we
know very soon which state machines are required at the lowest level - the lowest level is well
defined by the controlled devices. The definition of the rest is a process that is strongly bound to
progress in designing the lowest level of state machines. Building a hierarchy is an evolutionary
process with several trials and it does not have an ultimate solution. The solution reflects the
designer's ability and preferences: some people like to use a few, rather complex state
machines, other people prefer many simpler state machines in an elaborate hierarchy. There is
no definite answer as to which approach is a better one, as long as the designer can be quite
certain that he fully comprehends the way in which each state machine will function, in both
normal and abnormal situations.

Sins
StateWORKS does not impose any barriers considering the structure of the system. So, we
may design any system, for instance having in principle a hierarchical system with additional
links between some state machines. How much deviation from a hierarchical system could be
tolerated? The following diagram shows two examples of sins committed by a system designer.

The wrong links 1 and 2 are in bold. In case 1 a true Master (Transport) of Motor1 state
machine is by-passed, receiving commands from the Main state machine. It is very difficult to
understand the behavior of such a system. The probability of malfunctioning is very high as the
true Master of the state machine does not “know" about the additional command. The additional
commands are in fact a kind of unexpected input that must be “corrected” by the Master. On the
other hand, if we consider the influence of these additional commands in design of a Master

2

1

Main

Motor2 Motor1 Xxx

Transport Yyy

state machine we find no reason for them: those commands could be passed directly to the
true Master. It is difficult to design a state machine like Xxx, which gets commands from Main
and also from Yyy. What kind of design philosophy to follow?

There are many possibilities to corrupt the hierarchical system, similar to any software
corruption practice. We should avoid them as in general there is no real need for them. It is
better to put in some additional design effort and make a correct design, avoiding any non-
hierarchical deviations in the system, instead of succumbing to the illusion that doing it quickly
but wrongly will save time.

Example
We have put on our Web site a case study “A hierarchical system of state machines”. To make
it simple, as required for easy comprehension, we limited the system to a Master state machine
and four Slaves. It illustrates the ideas formulated in this note and demonstrates some details of
a StateWORKS implementation.

Summary
Using StateWORKS we recommend, for building a system of state machines:

- to use Master/Slave (command/state) interfaces for communication between state
machines

- to organize the system as a hierarchy of state machines based on a Master – Slave
principle

- to use bottom – up design

- to avoid corruption of the hierarchy by “wild” links among state machines.

Those of you with over 20 years experience of software design will see a very clear parallel
between these rules and those of "structured programming".

Using these rules we are able to build reliable and maintainable control systems with a high
degree of reusability. Well-designed state machines can be stored in a library and used in
future projects. The reuse of state machines applies especially for state machines on the lowest
level which control peripheral devices.

