
T. Wagner  October 2003 

String Object 
(STR) 

Introduction 
In contrast to typical digital and analogue signals in industrial control, in some systems, such 
as telecommunication and internet applications the control information has to be extracted 
from a string. For instance it might be required to check if in a dialled phone number the 
international prefix ‘00’ is provided, or when extracting an XML message the value of an 
attribute will be evaluated. Also simple ‘understanding’ of an incoming word like ‘start’ 
might be useful. 
The STR object offers all possible flexibility. It can be set up to exactly match the incoming 
strings, or to extract matching sub strings and provide them to other objects (other STR or a 
SWIP for converted values) for further evaluation. The functionality is provided by the 
regular expressions as known in UNIX tools like sed. 

Regular Expression 
A regular expression (RE) is a notation used for string evaluation. To fulfil various format 
requirements the RE defines a set of characters as listed in Table 1 below1. 

RE Meaning Example 
. Matches one arbitrary character a.c matches ‘abc’ but not 

‘abbc’ 
^ Matches the beginning of a string ^ab matches ‘abcd’ but not 

‘cdab’ 
$ Matches the end of a string ab$ matches ‘cdab’ but not 

‘abcd’ 
\n n=1..9, matches the same string of 

characters as was matched by a sub 
expression enclosed between () 
preceding the \n. n specifies the 
n-th sub expression 

(ab(cd)ef)A\2 matches 
‘abcdefAcd’ 

( ) sub expression (\d)A(\d) matches 1A2, 0A4 ... 
[ ] Defines a set of characters to be 

matched 
[a-z] matches ‘s’, ‘w’… but not 
‘S’, ‘W’… 

[^ ] Defines all characters except the 
Characters in the set 

[^1-9] matches ‘s’, ‘W’ … but 
not ‘1’, ‘2’… 

( | | ) Matches one of the alternatives (ab|cd) matches ‘ab’ and ‘cd’ 
RE+ Matches one or more times the RE [^1-9]+ matches ‘Good’ but not 

‘Obj5’ 
RE? Matches one or zero times the RE abc? matches ‘ab’ and ‘abc’ 
RE* Matches zero or more times the RE ab* matches ‘a’, ‘ab’, ‘abb’ … 

RE{n} Matches exactly n times the RE ab{2} matches ‘abb’ only 
RE{n,} Matches at least n times the RE ab{2,} matches ‘abb’, ‘abbb’ 

but not ‘ab’ 
RE{n,m} Matches any number of occurrences 

between n and m inclusive 
ab{1,2} matches ‘ab’ and ‘abb’ 
only 

Table 1: Special characters used with RE 

Examples: 
- to find leading ‘00’ substring in a phone number following RE could be used: 

^(0){2} 

                                                 
1 Note, that there is no standard definition of a regular expression. Thus, you may see descriptions that deviate a 
little bit from the definition used here. 



- to evaluate the numeric value of the attribute ‘type’ of an XML tag following RE could 
be used: type=”([0-9]+)” 

- to check if the incoming string is ‘start’, the RE would be(start) 

Object Description 
The STR object is itself a Virtual Finite State machine (VFSM). Its state transition diagram is 
shown in Figure 1. There are three commands defined: 

on – activate the STR object 
off – deactivate the STR object 
set – reactivate the STR object 

After the RTDB is started, the STR VFSM is in state OFF. When receiving command ‘on’ it 
goes to state INIT. In the INIT state the VFSM watches the string parameter which will 
deliver the control information to evaluate. When this string parameter changes, the STR 
VFSM is triggered and analyses the incoming string using the regular expression. Depending 
on the analysis result the STR VFSM changes then to one of the states: MATCH, 
NOMATCH or ERROR and stays there until the command ‘set’ is received. When receiving 
command ‘off’, the STR VFSM goes to state OFF independently of the state in which it was 
before. 

Always

on

OFF

1

set

off

NOMATCH

3

set

off
MATCH

4

nomatch match

off

error

INIT

2

E:
I:

matchnomatch

off
error

DEF

5

E:
I:

off

set

ERROR

6

 
Figure 1.  STR Object VFSM 

 



The STR object uses several properties: 
Input – Specifies the data object containing the string to be evaluated 
Regular expression – the RE can be hard coded or read from an data object 
List of substrings – list of data objects which will receive the found substrings for further 
evaluation. This field can contain data objects of various data types. If a substring will be a 
number it can be written to a data object with a proper data type and evaluated then using a 
SWIP object. If a substring will be just a string, it can be evaluated by another STR object 
after the extraction. The Figure 2 below shows the property window of the STR object: 
 

 
Figure 2.  STR Object Properties 

Examples 
Two examples will be discussed here: 

1. Controlling of a VFSM by a string command: 
This example shows how to evaluate incoming strings as pure commands 

2. Evaluation of substrings for control purposes 
This example shows how to extract substrings from the received string and convert 
them to other data types for further evaluation. 

Example1: Controlling of a VFSM by a string command 
The following state machine is very theoretical and uses mainly two states: IDLE and BUSY. 
It goes to state BUSY when receiving a string containing the string “start” and returns to state 
IDLE when receiving a string containing the substring “stop”. It ignores any other incoming 
strings. Figure 3 shows the VFSM. 



Always

always

INIT

1

X:

str_start_MATCH & str_stop_NOM...

str_start_NOMATCH & (str_stop_...

IDLE

2

E:

str_stop_MATCH & str_start_NOM...

str_stop_NOMATCH & (str_start_...

BUSY

3

E:

 
Figure 3.  StrCmd VFSM 

The used objects are (in the object Id dictionary): 
Name Object Type Description 
MyCmd CMD-IN Command for control purposes. 
par_command PAR Object containing the command string 
str_start STR Start command string definition. RE=(start) 
str_stop STR Start command string definition. RE=(stop) 

 
The input names used in the VFSM are: 
Name I/O Object ID Description 
always  Input name always existing 
MyCmd_Set MyCmd Command to reset the STR objects 
str_start_MATCH str_start Input name generated when the par_Command 

object data value is ‘start’ 
str_start_NOMATCH str_start Input name generated when the par_Command 

object data value is other then ‘start’ 
str_stop_MATCH str_stop Input name generated when the par_Command 

object data value is ‘stop’ 
str_stop_NOMATCH str_stop Input name generated when the par_Command 

object data value is other then ‘stop’ 
 
The output names used in the VFSM are: 
Name I/O Object ID Description 
1 MyCmd_Clear MyCmd Clears MyCmd 
2 str_start_On str_start Switches the str_start object on 
3 str_start_Set str_start Sends the ‘Set’ command to the str_start object 
4 str_stop_On str_stop Switches the str_stop object on 
5 str_stop_Set str_stop Sends the ‘Set’ command to the str_stop object 

To test this VFSM only the par_command has to be changed. With MyCmd_Set the used STR 
objects can be reset in case it is in the ERROR state due to a wrong regular expression.This 
example is implemented in project StrCmd.prj. 



Example2: Evaluation of substrings for control purposes 
The following state machine controls incoming requests to add or remove money to/from an 
account. It does not allow operations with amounts higher then 20,-EUR 
The incoming request is a parameter in the following format: 
**amount# - to add an amount 
##amount# - to remove an amount 
Hence, ‘**’ string means the ‘add’ operation, ‘##’ string means the ‘delete’ operation. The 
amount can be a number between 0 and 20. Single ‘#’ marks the end of the request string. 
The state machine as shown in Figure 4 fulfils the entire required functionality, but without 
real database access where the amounts would be calculated. 

Always

always

Init

1

X:

str_Incoming_MATCH

str_Incoming_NOMATCH

Idle

2

E:

str_Add_MATCH & swip_Amount_IN

str_Del_MATCH & swip_Amount_IN

swip_Amount_HIGH

Analyze

3

MyCmd_Continue
Add

4

E:

MyCmd_Continue

Del

5

E:

MyCmd_Continue

Error

6

 
Figure 4: Account VFSM 

The used objects are (object ID dictionary): 
Name Object Type Description 
MyCmd CMD-IN Command for control purposes; can be used for 

instance by a master VFSM 
swip_Amount SWIP Object controlling the par_Amount object; will make 

sure that par_Amount does not exceed the defined 
limit 

par_Amount PAR Object storing the amount as read from the 
par_Incoming object 

par_Incoming PAR Object which receives the request from outside 
par_Operation PAR Object storing the operation as read from the 

par_Incoming object 
str_Add STR Add operation string definition. RE=(\*\*) 
str_Del STR Delete operation string definition. RE=(\#\#) 
str_Incoming STR Request string definition. RE=(\*\*|\#\#)([0-9]+)\# 



 
The input names used in the VFSM are: 
Name Object ID Description 
always  Input name always existing 
MyCmd_Continue MyCmd Command to confirm that the VFSM 

could continue with next request 
swip_Amount_HIGH swip_Amount Input name generated when the 

par_Amount object data value exceeds 
the limit 

swip_Amount_IN swip_Amount Input name generated when the 
par_Amount object data value is below 
the limit 

par_Operation_CHANGED par_Operation Input name generated when the 
par_Operation object received new data 

str_Add_MATCH str_Add Input name generated when the 
par_Operation object data value is ‘**’ 

str_Del_MATCH str_Del Input name generated when the 
par_Amount object data value is ‘##’ 

str_Incoming_MATCH str_Incoming Input name generated when the 
par_Incoming object data value 
matches the regular expression 

str_Incoming_NOMATCH str_Incoming Input name generated when the 
par_Incoming object data value does 
not match the regular expression 

 
The output names used by this VFSM are 
Name I/O Object ID Description 
MyCmd_Clear MyCmd Clears MyCmd 
swip_Amount_On swip_Amount Switches the swip_Amount object on 
str_Add_On str_Add Switches the str_Add object on 
str_Add_Set str_Add Sends the ‘Set’ command to the 

str_Add object 
str_Del_On str_Del Switches the str_Del object on 
str_Del_Set str_Del Sends the ‘Set’ command to the str_Del 

object 
str_Incoming_On str_Incoming Switches the str_Incoming object on 
str_Incoming_Set str_Incoming Sends the ‘Set’ command to the 

str_Incoming object 
 
To test this VFSM only the parameter par_Incoming has to be changed in the monitor. After 
each request evaluation the command MyCmd_Clear has to be sent to be able to proceed with 
the next operation. This example is implemented in account.prj. 
When you install the StateWORKS Studio you will find the projects for the discusses 
examples in the folders: 
..\Project\Examples-Web\StrCmd and  
..\Project\Examples-Web\Account. 


