
F. Wagner April 2004

Standard Interface for StateWORKS Standard
Executor

Introduction
The technical note describes the concept of Standard IO-Unit which is used to implement IO-
interface with DLLs.

The StateWORKS execution environment has been originally meant as a framework for
application development. The RTDB library is used to build an application. The application
requires two additional components: the IO-Interface and the User-Interface. The User-
Interface can be, theoretically, built as a part of RTDB but in practise it is developed as a
separate client-program using tcp/ip link to the RTDB-Server (the old implementation used also
the DDE link). The IO-Interface is developed using RTDB class methods which are
documented in the “References for the StateWORKKS Class Library”.

Introducing DLL as the IO-Interface we separate also this part from RTDB. A StateWORKS
based control system is then composed from separate components shown in the Figure below.

The heart of the system is the Standard Executor which contains the RTDB and IO-Units. Each
IO-Unit is the same. The number of IO-Unit incarnations is defined by specifying the control
system in the StateWORKS Studio. Though the code of IO-Units is the same the number of
inputs and outputs may differ and is configured by system specification.

DLL
The DLL should contain functions which supply input values to the control system and pass
output values to the controlled device. As a control system operates on numerical values
(numbers) an extreme simple solution would be to have two functions: Read() and Write
correspondingly for input and output values. Using this solution it would be difficult to exploit
fully the power of RTDB – its feature to generate control signals from the input values and to
produce different output types. Therefore, we have defined a set of functions which assures a
proper usage of RTDB objects. The choice of functions is based on our experience but it is not

IO-Interface 1
(DLL)

IO-Interface 2
(DLL)

IO-Interface N
(DLL)

IO-Unit 1

IO-Unit 2

IO-Unit N

RTDB

User
Interface

Monitor tcp/ip

tcp/ip

Standard Executor

closed. If we find a reason to expand the set of DLL functions in the future or if a user has a
special requirement we can always add new functionality. The expansion is a rather simpler
task and could be done rapidly.

The StdDll.h file contains declarations of C- functions that have to be implemented in the DLL.
There are 3 groups of them.

The first group contains:

bool OpenDevice(long lAddress);
bool CloseDevice();

These functions are used by the IO-Unit to open and close the device driver. The device driver
is opened by a start of the application. If the device driver cannot be opened the application
exits. The device driver is closed when the application exits.

The second group contains “read” functions:

bool ReadBool(long* lValue, long lChannel); // DIs
bool ReadShort(short int* iValue, long lChannel); // XDAs
bool ReadLong(long* lValue, long lChannel); // NIs
bool ReadString(char** stValue, long lChannel); // DATs

These functions are used by the IO-Unit to poll input values. Each function must be written
taking into account its usage in the IO-Unit:

- The ReadBool() is used to deliver values of DI objects which is clear defined.

- The ReadShort() is used to deliver values of XDA objects. The meaning of the XDA
values is application dependent.

- The ReadLong() is used to deliver values of NI objects which meaning is clear defined.
The values are normally read from D-A converters. We have increased the resolution:
instead of the short int type which has corresponded to 16-bit converters we use now
the long type (no limitations on resolution).

- The ReadString() is used to deliver strings which are written into DAT objects. The
meaning of the DAT values is application dependent.

In addition, there is also the function:

bool ReadSingleBool(bool* bValue, long lChannel); // not used

defined which could be used to poll single digital input channels. In this moment, it is not used.
Maybe, in the future we will find a justification for it.

The third group contains “write” functions:

bool WriteSingleBool(bool bValue, long lChannel); // DO
bool WriteShort(short int iValue, long lChannel); // CMDs
bool WriteLong(long lValue, long lChannel); // NOs
bool WriteString(char* stValue, long lChannel); // TABs

These functions are used by the IO-Unit to output values. Each function must be written taking
into account its usage in the IO-Unit:

- The WriteSingleBool() is used to write the value of a DO object to the device driver. It
writes one single value at a time to a given channel.

- The WriteShort() is used to write the value of a CMD object to the device driver. The
IO-Unit may have only one CMD object; therefore the lChannel has always the value 0. On
demand it may be expanded. The meaning of the values is application dependent.

- The WriteLong() is used to write the value of a NO object to the device driver. The
meaning of the values is clear defined. We have increased the resolution: instead of the
short int type which has corresponded to 16-bit converters we use now the long
type (no limitations on resolution).

- The WriteString() is used to write a string to the device driver. The string is an output
of a TAB object. The IO-Unit can have only one TAB object; therefore the lChannel has
always the value 0. On demand it may be expanded. The meaning of the string is
application dependent.

A DLL must have implemented all the above functions. The function which are not required in
an application just return false.

The actual form of the DLL function declaration file depends on the development environment.
For instance, an h-file used for MS Visual Studio could have a form shown in the file
StExample1.h.

IO-Unit
The IO-Unit for the DLL may access the following object types: DI, NI, XDA and DAT for read
operations and DO, NO, CMD and TAB for write operation. In addition, the IO-Unit must contain
8 alarm objects; each alarm linked with a corresponding function (any failure by a read or write
operations is signalled by an alarm). Hence, the minimum content of the IO-Unit is:

 1 Par_DllName 11 must-not-be-changed
 2 Al_ReadDiError 4 must-not-be-changed
 3 Al_ReadXdaError 4 must-not-be-changed
 4 Al_ReadNiError 4 must-not-be-changed
 5 Al_ReadDatError 4 must-not-be-changed
 6 Al_WriteDoError 4 must-not-be-changed
 7 Al_WriteCmdError 4 must-not-be-changed
 8 Al_WriteNoError 4 must-not-be-changed
 9 Al_WriteTabError 4 must-not-be-changed
 10 Par_PollingTime 11 must-not-be-changed

By specifying the IO-Unit the following rules must be kept:

- 10 object names (2 parameters and 8 alarms) must not be changed or removed (see a
remark in the Description field)..

- The first (Par_DllName) and the last (Par_PollingTime) name and its position must
not be changed.

- Any number of object names may be inserted between the first (Par_DllName) and the
last (Par_PollingTime) name. The order does not play any role.

The StandardIO.unt file contains a sample of the unit definition for the standard IO-Unit. The
IOD-file has the following content:

H G:\StateWORKS\Projects\Examples\Standard\Conf\StandardUnit.iod

B # Name - Object List - Type Description
 1 Par_DllName 11 must-not-be-changed
 2 Al_ReadDiError 4 must-not-be-changed
 3 Al_ReadXdaError 4 must-not-be-changed

 4 Al_ReadNiError 4 must-not-be-changed
 5 Al_ReadDatError 4 must-not-be-changed
 6 Al_WriteDoError 4 must-not-be-changed
 7 Al_WriteCmdError 4 must-not-be-changed
 8 Al_WriteNoError 4 must-not-be-changed
 9 Al_WriteTabError 4 must-not-be-changed
 10 Cmd 2
 11 Di_0 5
 12 Di_1 5
 13 Di_2 5
 14 Di_3 5
 15 Di_4 5
 16 Di_5 5
 17 Di_6 5
 18 Di_7 5
 19 Do_0 6
 20 Do_1 6
 21 Do_2 6
 22 Do_3 6
 23 Do_4 6
 24 Do_5 6
 25 Do_6 6
 26 Do_7 6
 27 Ni_0 8
 28 Ni_1 8
 29 Ni_2 8
 30 Ni_3 8
 31 No_0 7
 32 No_1 7
 33 No_2 7
 34 No_3 7
 35 Dat_1 15
 36 Dat_2 15
 37 Xda_0 10
 38 Xda_1 10
 39 Tab 19
 40 Par_PollingTime 11 must-not-be-changed

Application
Each IO-Unit has a parameter Par_DllName. It is a string which is the name of the Dll which is
to be used by creating the IO-Unit and loading the DLL. The name may be written with or
without the extension (.dll). An application may have several IO-Units which use several DLLs.
A DLL may be used for many incarnations of IO-Units.

Each IO-Unit has also a parameter Par_PollingTime which defines the frequency of polling (in
ms) for a given unit.

Summary
Using DLL as the IO-Interface is for most applications an advantage. The Standard Executor is
then for the user a “black box” which just runs on the computer. With a set of DLLs the user
approaches the goal of the VFSM and StateWORKS concept – to have a ready-made
execution environment. The user may concentrate fully on the behaviour specification. The
dream of the true executable specification becomes then a reality.

