
TrafficLight.doc 1/7

Traffic light control - case study

Topic
We will discuss the design of a traffic light control at a level-crossing of a railway and a road.

The control rules are well known but as there may be some variants let us to lay down the details.

The railway consists of two tracks. Each is monitored by three sensors L(left), M(middle) and R(right).

We assume that a train may come from either direction on each track, but only one train (per track)
can enter the sensor zone (we call the space between sensor L and R the sensor zone). We assume
also that trains may be short or very long, i.e. a train in the sensor zone may cover no sensor, one
sensor, two sensors or all three sensors at the same time.

The control system should cover all imaginable situations switching the traffic lights according to the
following rules:

• Both lights are switched off if the control system is not working,

• The yellow lights are flashing if there is no train between sensors L and R or a train just passed
the sensor M and is still between sensors M and L(R) moving towards R(L), i.e. leaving the sensor
zone.

• The red lights are on if there is a train between sensor L(R) and M moving towards M, i.e.
approaching the road.

• Both red light and yellow lights are on if the situation is not definitely defined: after a system start,
when received an unexpected sensor signal and when the expected sensor signal has not come
after a certain time (train disappeared?). These situations are considered as unsafe ones and can
be resolved only by a manual control: if the situation is cleared the operator may reset the system.

L1 M1 R1

L2 R2 M2

Red
light

Flash
light

Red
light

Flash
light

TrafficLight.doc 2/7

Design
There is seldom "the best" solution for a control system. The solution depends on decisions taken by a
system project leader (which state machines to use) as well as on details of the specification of the
state machines themselves. Eventually, the specifics of the implementation tools may also influence
the solution. When specifying the state machines a designer may minimize the number of states by
using input actions intensively (Mealy model). Or he may not bother about the number of states, trying
to achieve a clear, understandable state machine (Moore model).

The example demonstrates how to cover unusual situations in a control system. Of course, a state
machine that covers only a correct sequence of sensor changes is very simple to design and does not
present any challenge to other solutions. For a simple system when only the "sunny day" scenario is
considered any solution will do. Problems arise from the rarely occurring but dangerous, erroneous
situations which make the design of control systems difficult and justify all the effort needed to design
a good control system.

The TrafficLight control system will be designed as a modular system which can be expanded for any
number of tracks, each having 3 sensors: L, M, R.

 “Obvious” solution
Let us consider first only the problem that seems to be the basic one: how to identify the train position
that determines the traffic lights.

If you think a while about it you may find very soon an obvious solution: the system has to “know” that
a train entered the sensor zone, i.e. it has passed the sensor L or R and moves towards the sensor M.
This information seems to be sufficient to switch on the red light. When the train is over the sensor M
the red light stays switched on. When eventually the train leaves the sensor M the red light can be
switched off. The information: moving towards (plus staying over the sensor M) and left sensor M
seems to be sufficient to control both lights: red and the flashing yellow one. Thus, it seems that, using
a hardware analogy, one flip-flop should be enough to control the lamp or in other words - two states
will do.

This solution has one major limitation: it uses the signal edges for control: in hardware it would mean -
the raising edge of the L sensor sets the flip-flop, the falling edge of the M sensor resets it. This kind of
control is not always possible and it is considered as unreliable. Anyway, for our exercise, as we want
first to show a simple solution we are generous and accept for a while this “edge” based solution and
assume that we are able to “detect” the direction of signal changes.

Before we show you the error in the solution we will underline once more the difference between the
“sunny day scenario” and the real world. The simple analysis above has been limited to the “sunny day
scenario” which considers only the correct, i.e. the most probable sequence of events (sensor
changes according to train movement). If we limit our consideration to the “sunny day scenario” we
forget the true control problem. In the discussed example there are at least the following situations
which require consideration, namely the system behavior

- on startup,

- when the “train get lost” (it entered the sensor zone but never left it),

- when an unexpected sensor signal occurs, for instance a sensor M signals the presence of a
train though there has been no train yet detected in the sensor zone.

If we take into account all what we have said up to now we could specify the state machine shown
below. The diagram shows the basic two states: NoTrain and Present to realize the basic control.

In addition, to make the control system more realistic, we introduced:

- a state Start which allows the state machine to switch on the traffic lights after the start-up,

- states Missing and Unexpected to handle the two above mentioned erroneous situation.

If we try to define transition conditions and actions for the Unexpected state we encounter some
difficulties. Let us consider the following situation: a short train has entered the sensor zone, the state
machine has detected the change of the L sensor and has changed its state from NoTrain to Present
where it has switched on the red light and has stopped the yellow flashing light. The train continues its
movement towards the sensor M. Eventually, the train leaves the sensor L but it has not arrived at
sensor M yet. In this moment the sensor L signals a (new?) train. What should the state machine do

TrafficLight.doc 3/7

now? Our first reaction – change to the state Unexpected - will not work. This has been the condition
to make the transition from NoTrain to Present. So, if we use the same condition for the transition from
state Present to Unexpected this transition will be performed immediately when entering the state
Present. We see that the state machine cannot express the different situations in the analyzed control
system with two states. To specify the behavior of the light control we need more states.

Always

alwaysInit

1

Reset_ButtonStart

3

Sensor_1

Sensor_2

NoTrain

5

E:

Ecnt_Sensor_M_Low

Sens
or_2

Timer_OVER

Present

6

E: X:

Unexpected

7
Rese

t_Butto
n & Sensor_1_NOT & ...

Missing

8

The ultimate Control
After the first unsuccessful trials we jump over the many intermediate solutions that could have been
explored and present the complete solution.

The control system consists of three state machines: TrafficLight, Light and Flash. Light is the state
machine which realizes the control sequence for one direction. Flash is a state machine which
generates the Yellow (flash) traffic light. TrafficLight is the main state machine which controls directly
the Red traffic light. TrafficLight enables/disables the functioning of Flash by commands Cmd_Enable
(1) and Cmd_Disable (2).

TrafficLight.doc 4/7

Light
The Light state machine "follows" the train and at any time presents the train position by its states. You
need 2 Light state machines for one rail: one state machine for each direction. The state transition
diagram for Light is as follows:

Always

always

I nit

1

Delay_OVERDelayS tart

2

E: X:
Reset_ButtonSt art

3

Light2_NoTrain & Delay_OVER

Disabled

4

I :
X:

Light2_Coming

Sensor_
1

Sensor_M

NoT rain

5

E:

Sensor_1_NOT

Sensor_M

Sensor_2

Tim
e r_O

VE
R

Coming
6

E:

Sensor_M

Sensor_1 | Sensor_2Timer_OVER

Approa ching

7

E:

Sen
so

r_
1_

NOT

Sensor_2

Sensor_
M_NOTTim

er_O
VER

ApprP resent
8

E:

Sensor_M_NOT

Sensor_2

Sensor_1Timer_OVER

Present

9

E:

Sensor_1_NOT

Sensor_M_NOT | Sensor_2_NOTTimer_OVER

AllP resent

10

E:

Sen
sor_

M_NOT

Se
ns

or
_1

 |
Se

ns
or

_2
_N

O
T

Timer_OVER

LeavP resent

11

E:

Sensor_2

Sen
so

r_1
 | S

en
so

r_M

Timer_OVER

Leaving

12

E:

Sensor_2_NOT

S
ens or_1 | S ens or_ M

Timer_OVER

G oing

13

E:

Reset_Button & Sensor_1_NOT & ...

M issing

15

E:
I :

X:

Reset_Button & Sensor_1_NOT & ...

Une xpect ed

14

E:
I :

X:

The state transition diagram displays only the states and transition conditions. The complete
specification requires the entry, exit and input actions which are only indicated the diagram by letters
E:, X;, I;. The full specification is included in state transition tables. (If you explore the design by means
of StateWORKS Studio, you will need to double-click on any state to see the full details of its actions
and transitions.)

If there is no train between sensors L and R the state machine stays in the state NoTrain. Depending
on the train length many state sequences are imaginable, for instance:

- for a short train which covers only one sensor at a time
NoTrain -> Coming -> Approaching -> Present -> Leaving -> Going -> NoTrain

- for a long train which covers two sensors at a time
NoTrain -> Coming -> ApprPresent -> Present -> LeavPresent -> Going -> NoTrain

- for a very long train which covers all three sensors at a time
NoTrain -> Coming -> Approaching -> AllPresent -> Leaving -> Going -> NoTrain

The functioning of the two Light state machines for a rail is mutually exclusive: if one state machine
goes into the state Coming the "partner" state machine goes into the state Disabled. This arrangement
avoids erroneous signaling of failures: a proper sequence of events (sensors) for one direction would
be a failure for the other direction.

TrafficLight
As the Light state machine represents at any time the train position the TrafficLight state machine can
be a simple combinatorial system. In StateWORKS it is just a degenerate state machine with one state
Init where all the combinatorial functions are defined in the Always section.

TrafficLight.doc 5/7

The behavior of the two traffic lights: Light (red) and Flash (yellow) is then defined by states of the
Light state machine in the following table:

Light (red) Flash (yellow) State Condition

Off On Disable Enable
Start Start X X
Disabled Disabled X X
NoTrain NoTrain X X
Coming X X
Approaching X X
ApprPresent X X
Present X X
AllPresent X X
LeavePresent

TrainComing

 X X
Leaving X X
Going

TrainGoing
X X

Unexpected X X
Missing

Error
 X X

To simplify the logic equations the states are combined in complex Conditions, for instance the
condition TrainComing is a OR combination of 6 six states (Coming, Approaching, ApprPresent,
Present, AllPresent, LeavePresent) and describes situations when the train is between the sensors 1
and 2 moving towards M or is already on M. Using the complex Conditions the following equations
specify the On/Off signals for the Red light:

RedLightOn = Start OR TrainComing OR Error

RedLightOff = Disabled OR NoTrain OR TrainGoing

Similar equations can be defined for the Yellow (Flash) light.

For several rails the OR-combination for On signal and AND-combination for Off signal will do. For
instance for 2-rail railway we get the following equations:

RedLightOn = Start1 OR TrainComing1 OR Error1 OR

Start2 OR TrainComing2 OR Error2

RedLightOff = (Disabled1 OR NoTrain1 OR TrainGoing1) AND

(Disabled2 OR NoTrain2 OR TrainGoing2)

Flash
The Yellow light is not controlled directly by the TrafficLight state machine. There is a simple Flash
state machine which generates the flash-cycle and controls the Yellow light. The TrafficLight state
machine controls the behavior of the Flash state machine using commands: CmdEnable and
CmdDisable.

Alwa ys

Init

A lwa ys

always

Ini t

T ime r_ OVE R&(Cmd_ E nable | D i_ E na ble)

Light_ Of f. . .

E :
T ime r_OVE R

Light_ On. . .

E :

TrafficLight.doc 6/7

System for 2-track railway
The following diagram shows the state machines system required for a 2-track railway. It is interesting
to note the unconventional system structure. It is not a typical hierarchical system. The main state
machine TrafficLight which in fact controls the traffic light is a combinatorial system which uses the
states of the state machines Light as inputs. The state machines Light create a layer which
"translates" the train movements into definite train positions. Knowing the train positions, the control
problem simplifies to a pure combinatorial system solved by TrafficLight. The approach can be
extended to more tracks, and you may notice that, once a state machine has been designed, further
instances can be added to the project very easily.

Conclusions
The case study represents fragments of a typical design procedure. We start to analyze the control
system producing the first trial solution. Doing this we learn better the requirements. After several trials
we understand the problem and we do the first system design where we decide about the overall
structure of the system: inputs, outputs, type and number of state machines and their interface (in fact,
we decompose in this moment the control task in manageable entities and determine how this entities
cooperate).The system design may not be the ultimate now. It may be changed if during the state
machine specifications we encounter problems which solutions require changes in the system design.

We could not show you all the steps, errors made, all the defeats and triumphs which accompany the
design process. We just presented the first unsatisfactory trial and then the ultimate solution.

Is the solution the best one? Nobody can answer this question. We like it and it works, so, we stopped
searching for better solutions.

You may have questions, especially considering the Light state machine. It may seem an overkill to
use so many states. Considering the basic representation of train movement, we started with two
states (NoTrains and Present) and ended with nine states (NoTrain, Coming, …Going). We have
shown that the minimal solution could not work but we have not proved that we really need 9 states.
Maybe a smaller number will do. We have of course tried other solutions. If we were to design a

Cmd

State State State State

State

State
Light:1:Left Light:1:Right

1:Di:L 1:Di:M 1:Di:R

State

State
Light:2:Left Light:2:Right

2:Di:L 2:Di:M 2:Di:R

TrafficLight

Flash

Do:Light Do:Flash

TrafficLight.doc 7/7

hardware system with a limited number of flip-flops (nowadays this does not seem to be a problem
either) we would try to minimize the number of states. Using Automata Theory design methods we can
arrive at a state transition diagram with a minimal number of states (we have done this and we have
obtained a state transition diagram with 5 states as a minimum solution). There are two problems with
this approach: (1) How many people know and are able to effectively use the Automata Theory
methods? (2) A solution with the minimal number of states is often less comprehensible than a system
with intuitively defined states.

In a software implementation the number of states does not significantly influence the needed
memory, so other factors are important. In software implementations we should choose clear,
understandable solutions. This should not be understood as an encouragement to overuse states. In
this specific control system we have the impression that the states used represent very well the train
position, which is the essential information. Paraphrasing a well-known rule we would recommend: use
as many states as you find necessary but no more.

With this example of traffic light control we would like to pass a message: do not underestimate the
control problem. At a first glance, the traffic light control may appear as a trivial exercise. It may be
simple if we limit our considerations to a “sunny day scenario” with one train going one direction
without any practical value. It is a non-trivial problem if we discuss it seriously, taking into account the
real situations which may occur in such a system. The task of a control system is to react not only to
expected, routine sequences but to manage unexpected situations which may appear once a year or
even once in the system lifetime. Correct action in these rare situations may save human life or save
costly damage to hardware equipment.

You find the full specification of the Traffic light control in state transition tables and project
configuration as implemented using StateWORKS. When you install the StateWORKS Studio you will
find the entire project in the folder ..\Project\Examples-Book\TrafficLight. To have a look at it you need
to use StateWORKS Studio. You may also play with the system using the SWLab and SWMon or
SWTerm. You will see that the system fulfils the traffic lights requirements perfectly.

