F. Wagner

A Virtual Environment For Table-Based
Control Software

Abstract

Software can perform more simply and effectively if it is driven by a set of uniform input signals. This
paper presents the concept of a virtual environment which separates heterogeneous real-world signals
from a uniform virtual world of names. The concept uses sets to express boolean functions and is
presented with details for implementing logical functions. The virtual environment concept allows a
finite state machine be totally table driven.

1. Introduction

Programs written in high-level procedural languages, like PASCAL, C, MODULA-2 or ADA, can
only be formed from a few types of statements, as defined by the syntax rules of the language.
The statements can be grouped into three categories:

— assignment, loops: for, while, repeat;
— if then else, case (switch);
-— go to.

These statements control the execution of the program: select other statements to be executed,
perform loops, and transfer program control. The disadvantages of the "go to" statement had
been understood some 20 years ago, and led to the idea of a structured programming style, which
replaced the previous, rather chaotic, style. The "go to" statement has remained in the syntax
definition of programming languages as a kind of relic, but it is rarely used in practice.

Structured programming has not solved all software problems. The software crisis is a current
reality. A long list of problems contribute to this situation. Programs are difficult to read and to
change. The "logic" of programs is expressed by "if then else" and "case" statements. More
complex logical bindings, when expressed in these statements, are difficult to understand (see
example of a Pascal program in Appendix A). Any change of the logical expression requires a
change to the code, which may not really be under control, and may have unexpected side effects.

A key point made in this paper is that we must try to avoid use of the "if then else" and "case"
statements. Replacing them with tables dramatically improves the situation. A program which
consists only of assignments and loop statements is easier to read and understand, because the
logic of the problem is concentrated in tables, which are easier for a human being to understand.
In addition, table-driven software is modifiable without recompilation, even on-line in some
instances.

This paper discusses the usage of tables in writing control software. The idea of table-driven
software has long been known but has not been fully exploited. In addition to some psychological
barriers, there is also a purely technical problem. Namely, the use of tables requires uniform
inputs. This paper introduces the concept of a virtual environment where all input signals are
known by names, which correspond to the control essences of the signals.

The virtual environment allows us to introduce a new method of expressing boolean functions.
Conventional software structures (arrays of boolean) for the truth table of a logical function must

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

3

be completely defined. They include, in many cases, don’t care conditions, i.e., redundant
information required by the syntax rules of a programming language. The "table of sets" form a]'-o;,
boolean function, presented in this paper, allows the size of tables be kept minimal - the size is
determined by the essential information only.

Sections 2 and 3 summarize basic features of table-driven software. Section 4 defines a new
method for expressing boolean functions by sets. Section 5 introduces the concept of a virtual
environment, which allows us to exploit fully the "table of sets" form of boolean functions.
Section 6 documents, by example a possible software implementation of the virtual environment
and the "table of sets" concept. Section 7 describes the results of applying the virtual
environment for designing a table-driven finite state machine. Conclusions in Section 8 close the

paper.

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

Logical expressions as software tables

In high-level languages a table can be specified by a structured constant or an initialized variable.
The second form will be used in the examples in this paper.

Let us examine some possible software expressions of a logical function:
y=(aANDDb)OR ¢

for which the truth table is presented in Figure 1.

where: 0 — FALSE
1 — TRUE

Ll ol ol > B =)]
H = O OMMMOC|oT

—_O~OKF~OFO|e
= O = O = Ol

Figure 1. Truth table of the logical function y.

The obvious software implementation in PASCAL is shown in Figure 2.

FUNCTION Logical (a,b,c : BOOLEAN) : BOOLEAN;
BEGIN

Logical := (a AND b) OR ¢;
END;

Figure 2. Coded implementation of the logical function y.

If the result of a problem analysis is presented in a control flow diagram, programmers will tend to
translate it directly into a code. This approach leads to programs with long, unreadable
"if-then-else" statements (see Appendix A).

The statement in Figure 2 is the simplest expression of the Logical function. If this is the only
form of the function, it is the best solution. However, in many practical applications it is not only
still more complex than necessary; but also it must be changed from time to time, which may
introduce errors. Any change in the truth table requires reanalysis of the function.

Figure 3 presents a table solution as a PASCAL function. In cases where the truth table may be
changed, Figure 3 is the better solution in comparison with the coded implementation. Because,
in fact, the function in Figure 3 represents any logical function of three variables - the adjustment
to a specific function is done by appropriate initialization of the variable ¢_logical. As the variable
c_logical can be changed at any time in the program, the function Logical can be modified during
execution of the program.

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

FUNCTION Logical (a,b,c : BOOLEAN) : BOOLEAN,

TYPE
a_logical = ARRAY [BOOLEAN, BOOLEAN, BOOLEAN] OF BOOLEAN;
VAR
c_logical : a_logical := (((FALSE,
TRUE),
(FALSE,
((FALSE,
TRUE),
(TRUE,
TRUE)))
BEGIN
Logical := c_logical [a,b,c|;
END;

Figure 3. Table implementation of the Logical function.

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

(@2}

3. Table driven automata

Tables can be used to implement automata. The advantages of tables are evident in situations
where the automaton is not just a counter but has a somewhat more complex transition diagram.
As an example, let us discuss an automaton which has a variable number of states. In other
words, the automaton generates sequences of numbers. It has two inputs: seq_sel = 0..3 which
determines one of four possible sequences, and the current state (cur_state). A sequence can have
2, 4 or 5 elements (numbers) - the details are shown in Figure 4 as a C language function.

a)

c)

define
define

seq_sel | sequence of states (numbers) b)
0 | 24
1| 0321
2 | 0132
3 | 0-1-2-3-4

MAX SEQ 4 /* number of sequences */

MAX STATES 5 /* highest number of states */
generate (seq_sel, cur_state) /* generate next state of a sequence */
int seq_sel, cur_state; /* seq_sel selected sequence */

/* cur_state current state of automata */
{
int next_state; /* next state of automata */

state int ¢_count [MAX SEQ] [MAX_STATES] =

{
{i22:492.9 1. /* sequence 2-4 */
{301,201}, /* sequence 0-3-2-1 */
{1,3,0,2,0}, /* sequence 0-1-3-2 */
{1,234,0} /* sequence 0-1-2-3-4 */
b

next_state = c¢_count [seq_sel] [cur_state];

return next_state;

Figure 4. Sequence generator: states sequences (a), state
diagram (b), implementation as a function in C (c).

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

7

Table-driven software automata are considerably easier to design then their coded equivalents.
Each will represent a whole class of automata, the specific one being determined by the content of
the table, in a specific case. Designing automata with more complex transition functions is not so
obvious. With this introduction, let us now turn to a method by which more complex logical
functions can be implemented efficiently in tabular form.

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

4. The use of sets in boolean expressions
Let us name the values of a boolean variable z;
2l stands for the FALSE value

z¥ stands for the TRUE value

Let the AND operation on boolean variables z; - - - z; be expressed as a set {z,...,7;} (see
Appendix B) where:
z=2f forz
7= 2zf for z;
Example 1:

aAND bAND ¢ <==> {a7, b, (7}

Assume that a logical function f(z,, - - - ,2;} has the boolean disjunctive form. Then the function
can be expressed as an array of sets:

{;"]"':Ek}l
f(Il,...,(rk) = s N
{z1,...,3:}n

where n is equal to number of terms (AND expressions) in the f function.

Example 2:
" {a”,57}
f=aANDb OR aAND 6ANDc¢ OR ¢ <== fal, 8% 67}
{7}

The value of a logical function in the "table of sets" form can be calculated as:
f(z1)0m) = ({BieotshC actual_variable set) OR

({z1,...,7}.C actual_variable_set))

where operator C = "is a subset of", and
actual_variable_set = set of names which correspond to
actual variables’ boolean values

In other words the (boolean) value of the function is evaluated by testing whether any of the
"AND-sets" in the table is a subset of the actual set of variable names, as determined by the
current environment.

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

Example 3: Calculate the value of the function
f = (a AND b) OR (a AND b AND ¢) OR ¢
for a = TRUE, b = FALSE, ¢ = TRUE
which corresponds to
actual_variable_set = {a7, bF T}
f= ({aTr ElT} = {aTr bF: cT}} OR
(fa®, ¥, ¢"F C {o®, 5", %) OR

(2™} C [o% 7, eTh)=

FALSE OR TRUE OR TRUE = TRUE

The empty set is a special case - by convention, it means "always FALSE". In addition, the set of
all input names must be completed with an "always" name which is used to express "always
TRUE". Hence, in a set representation of an AND term:

{2T,..} means: the term is TRUE if x=TRUE and . . .
{zF,..} means: the term is TRUE if x=FALSE and . . .
{} means: the term is always FALSE

{always} means: the term is always TRUE

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

10

Example 4: Express in a "table of sets" form functions
described in the specification in the following
way:

f1 should be TRUE if
(z; is TRUE and z is FALSE) or
(29 is FALSE) or
(23 is FALSE and z, is TRUE and zg is TRUE)

f2 should be TRUE if
(z; is TRUE and 2, is TRUE)

fa should be TRUE if

(z3 is TRUE) or

(#, is FALSE) or

(z9 is TRUE and z4 is TRUE)
f4 should be always FALSE

f5 should be always TRUE

Solution:
{off of} (e} {af of of (f1)
{af, =i} {} {} (f2)
f = [{zf} {21} {2, 24} (fs)
{} {} {} (£4)
{always} {} { (fs)

The "table of sets" form of a logical function can be used to express any logical function of many
variables in a table form. The size of the table is determined by the largest expected number of
terms of the function in disjunctive form. The minimal form of the function is preferable but not
necessary - any form which fits in the assumed maximal size will do. The "table of sets" form
corresponds to the usual way used by designers to describe logical conditions in a disjunctive form:
writing factors which are essential for the function and neglecting the complexity of the function.

Notice that the function f; in Example 4 must have at least one {always} set - the content of the
other sets is then irrelevant (disjunctive form).

The table in Example 4 presents five logical functions of six variables. Even for this small
problem, the human mind has difficulty in comprehending the direct boolean form as used in
Figure 3. This difficulty is not due to the size of the expression, but rather is due to limits on the
human ability to understand and operate software structures.

The "table of sets" is a direct translation of the specification from the form conceived by human
minds into software structure. It is readable and easy to change without introducing errors. A
“table of sets” is a valuable form in cases where its limitation - the number of factors - is
acceptable, which is the case in practical problems.

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

11

The use of sets for expressing a boolean function is not limited to a disjunctive form. The same
idea can be applied to a conjunctive form, the table consisting of OR instead of AND terms. The
conjunctive form is evaluated by testing whether all of the "OR-sets”" in the table are subsets of
the actual set of variable names. In this case, an empty set has also, by convention, a special
meaning - always TRUE. But there is one exception - all empty sets in the table are used to
express an always FALSE value of the function.

The application of "table of sets" for expressing more complex forms of boolean functions is
imaginable, but seldom necessary. :

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

Virtual environment

The use of "table of sets" requires the conversion of real signals into "named" (virtual) signals,
which create the virtual environment. The formal specification, as well as its software
implementation operate exclusively on these names. The method of expressing boolean functions
in the "table of sets" form has been discussed using boolean signals, but virtual signals are not
restricted to boolean ones. The virtual signals are just names and their origin is irrelevant for the
boolean function. For instance a verbal specification:

the "motor" should be "switched off" if the "oil temperature” has
been "too high" for at least 120 seconds, or the "emergency
switch” has been pressed, or the "command off" has been received,
or the "command idle" has been received while the machine has
reached the "end position"”

can be expressed as:

{oil_temp_too_high, timeout}
motor_off =| {emergency_on}

{cmd_off}

{cmd_idle, position_end}

This is the formal specification which can be directly used in an appropriate software structure
and which corresponds to the "table of sets” form. Some of the invented names (emergency on,
position_end) will correspond to real boolean signals, others - do not. The specification covers the
control flow only; it uses symbolic virtual names and does not cover other information irrelevant
for control, such as the temperature timeout value. Any multivalued signals, such as: commands,
switchpoints, etc., may be translated (see Appendix C). The conversion of real signals into virtual
signals can be achieved by means of tables. Hence, the entire system consists of translation tables
and logical function tables, as shown in Figure 5.

The inputs in the form of events and input data (for instance, parameters) are translated into
names which create the virtual input. The translation process may have several forms, basically:

— one input produces one virtual input entry;
— one input produces two or more virtual input entries;
— many inputs produce one virtual input entry.

The virtual input is used by the function table to produce the output; in this case the logical
function.

To explain better this point let us examine the example of a string of digits coming from a
telephone. Considering the data flow the string represents a number. For control purposes the
string consists of separate digits, some of them carrying essential control information, for instance:
“first digit", "last digit", "zero digit", "any other digit”. In fact the actual value of the digit is
irrelevant for the control flow.

As an another example let us take the typical signal for control processes - the boolean one. If the
control process needs, for instance, only the true value of the boolean signal, the signal would be
represented in the virtual input by one name: signal name true. If the control process uses both
true and false values, then both names will appear in the virtual inputs: signal name false and
signal_name_true.

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

13

The conversion of real inputs to virtual inputs allows the software to operate in a uniform, virtual
world containing only the essential facts, as compared to the multi-format, often redundant world

of signals from the external environment.

simplicity.
i
Real signals '
(boolean values, : Virtual names
commands, |
digits, etc.) |
:
]
Translation Virtual
tables input

- - -

- -
-
-—

Figure 5. System for calculating logical functions
based on "table of sets™ representation

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

Function
table

Once again, abstraction has produced software

Real signals

(boolean values)

14

6. Implementation example

Implementation of the "table of sets" technique depends on the language used. If the language has
the set type and the set operations in its syntax definition, then there exists a direct
correspondence between the specification and implementation. The following example presents
one implementation of the discussed technique.

Example 5.

A system has several inputs which belong to four categories: emd (stands for command), digit,
count, and timer. It calculates three logical functions:

f1 = "cmd read came"

f2 = "emd idle came" or
"first digit is zero" or
"time_2 elapsed"

f3 = "first digit came" or
"last digit came and is not zero" and "c¢md idle came"
Figure 6 shows all input/output signals and the virtual environment. The implementation in a
PASCAL-like language follows. Such details as implementation of the digit counter, the timers,

resetting of the counter and timers, etc., are omitted for clarity. The example presents detailed
implementation for the "table of sets" specification of logical functions. It consists of:

— constant declarations;

— type declarations (begin with a letter describing the type: e - stands for enumeration, a - for
array, s - for set, i - for integer, r - for record);

— variable declarations, which are translation and function tables;

— virtual input and logical function declaration (the first letter v - stands for virtual, ¢ - for
constant, as the c_variables are used, in fact, as constants);

— procedure to actualize the virtual input;
— procedure to calculate the logical function.

We note in passing that the program structure is very regular, and hence, well suited for creation
from specification by a program generator.

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

real
inputs ¢ emd v_input
cmd-
cmd read
‘\ cmd-
c_digit idle
0
digit 3\; dig-
of® 0
Q
9 L
dig-
g Teset ¢ count ay
0
1 :
digit Counter | count 5 \ dig-
g first
max
c_time\ dig-
last
timer
o [timer 2_
out

Figure 6. System for calculating functions

in the program "example",

AT&T - RESTRICTED

Solely for authorized persons

having a need to know pursuant

to Company Instructions

c¢_logical

s
sl

S

PROGRAM example;

CONST
count_max
func_max
prod_max

TYPE

{ real inputs declaration }

e_cmd =
i digit =
1_count =
e_timer =

{ events }

(off, read, write, idle);
0..9;

0..count_max;

(time_1, time_2, delay);

e_event = (cmd, digit, count, timer);
r_event = RECORD
CASE event : e_event OF

cemd
digit
count
timer
END;

(cmd_event : e_cmd);
(digit_event : i_digit);
(count_event : i_count);
(timer_event : e_timer);

{ virtual input declaration }

e_input =

s_input =

(emd_read,
cmd_idle,
dig_0,
dig_any,
dig_first,
dig_last,
tim_2_out);

SET OF e_input;

{ translation tables declaration }

a_cmd =
a_digit =
a_count =
a_timer =

ARRAY [e_cmd] OF s_input;
ARRAY [i_digit] OF s_input;
ARRAY [i_count] OF s_input;
ARRAY [e_timer]| OF s_input;

{ function table declaration }
a_logical = ARRAY [1..func_max, 1..prod_max| OF s_input;

VAR
{ translation tables }
c_emd :a_emd = ([], [emd_read], [], [cmd _idle]);
c_digit : a_digit := ([dig_0], 9 OF [dig_any]);
¢_count : a_count := ([], [dig_first], (count_max-2) OF |
c_timer : a_timer := ([], [tim_2_out], []),

{ auxiliary variables }

c_cmd all
c_digit_all

: s_input := [cmd_read, cmd_idle|;
: s_input := [dig_0, dig_any];

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

]

, [dig_last]);

16

c_count_all : s_input := [dig_first, dig_last];
c_timer_all : s_input := [tim_2_out];

{ function table }
¢_logical : a_logical = (

{1} ([cmd_read], 2 OF []),
{ £y } ([emd_idle], [dig_0, dig_first], [tim_2 out]),
{ f3} ([dig_first], [dig_last, dig_any, cmd _idle], [])

b

{ real input }
inp : r_event;

{ virtual input }
v_input : s_input;

{ logical functions }
logical : ARRAY [1..func_max] OF BOOLEAN;

PROCEDURE actualize_virtual input;

BEGIN
WITH inp DO
CASE event OF
emd @ v_input := v_input - ¢c_cmd_all + ¢_cmd [cmd_event|;
digit : v_input := v_input - ¢_digit_all + c_digit [digit_event];
count : v_input := v_input - c¢_count_all + c¢_count [count_event];
timer : v_input := v_input - ¢_timer_all + c_timer [timer_event];
END;
END;

PROCEDURE calculate function;
VAR fune, prod : INTEGER;

BEGIN
logical := ZERO;
FOR func := 1 TO func max DO
FOR prod := 1 TO prSd_max DO
IF ¢_logical [func, prod] <> [] { is not empty }
THEN logical [func] := logical [func] OR
(c_logical [func, prod] <= v_input);
END; :
BEGIN { main - program example }
REPEAT
wait_on_event_or_read_input; { not defined here }
actualize_virtual input;
calculate function;

UNTIL FALSE;
END.

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

17

18

7. Table-driven finite state machine

The concept of a virtual environment permits complex software to be constructed without specific
programs, and has been successfully applied to development of standard modules for control
purposes, implementing table-driven state machines.

Figure 7 shows a block diagram of such a state machine. The state machine works in a virtual
environment processing input names and producing output names. Tables perform the interfacing
to the real world: translating real inputs to input names and output names to real outputs. A
transition table describes the functioning of the state machine using virtual names exclusively.

The logic of the State Machine is contained completely in the Virtual Transition Table. The
content of the table depends neither on the language used nor on the Data Base or the Operating
System. Thus the virtual names, and the tables which use them, create a highly portable
environment in which the specification and implementation are merged.

Such state machines are not only rapidly and easily constructed; they have the immense merit of
remaining comprehensible to the engineers who have originally specified the system behavior.
This stands in contrast to conventional forms of programming, even in the most high-level and
specialized of programming languages. Thus it is possible to "maintain" such software modules, in
the sense of correcting errors of conception, or of adapting them to meet changed requirements,
with far less effort and worry than is the case with conventional software.

This concept has been tested during the design of software for complex control systems. The most
complicated system has 2,000 inputs and outputs and consists of 400 interconnected virtual finite
state machines. The size of each machine varies from 20 to 60 states. Each system is highly
parameterized because of customization requirements.

Real world Virtual environment Real world
Translation Transition Translation
tables table tables
Real Virtual Virtual Real
input input output output
signals names names | _signalg

Figure 7. Totally table-driven finite state machine
using a concept of virtual environment

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

19

8. Conclusions

' o ' [} |

Thé tééhhl[ﬂlé A[l‘ébl‘ééénhng Loolean functlons A8 taues or sels, wLen colenecl de ELe concept
of a virtual environment, provides a powerful tool for expressing logical functions of many inputs,
the inputs being of a variety of types.

The virtual environment is created by the system designer during the analysis and specification
phase. The names which are invented during this phase represent the complete and only control
information about the inputs. There is a one-to-one correspondence between the specification of a
control problem and its implementation. Hence, automatic code generation is straightforward. A
further advantage is that during debugging a designer stays in his specification environment. To
summarize - in all stages of software development - from specification to code generation to run
time the environment does not change.

Programs written using tables avoid the coding of "if then else" and "case" statements. A
program which consists only of assignment and loop statements is easier to read and understand,
because the logic of the problem is concentrated in tables for which human comprehensive is
higher than for complex "if then else" conditions. Performance of table-based software increases,
because tables represent conditions which are prepared off-line and are accessed during the
program execution.

It is suggested that the use of software tools such as those described above will be the only way to
generate reliable software for safety-critical applications. Rather than searching for formal tools
for validation of software, let us rather eliminate the need for such tools, at least in
project-specific form, so that no new, and thus incompletely proven, software has ever to enter
service.

Acknowledgement

I have tested the virtual environment concept by designing table-driven software for BALZERS
AG, a leading manufacturer of semiconductor production equipment. With my colleagues there,
we applied this idea to build a hierarchical system of state machines for the purpose of process
control. Especially the feedback from M. Matt and R. Schmucki helped me to implement the
table-driven state machine. Acknowledgement also to Professor G.Franzkowiak for his
contribution. J. Dobrowolski, H. Itzkowitz, L. Mekly, L. Schutte, D. Hong and P. Wolstenholme
made many helpful suggestions in the process of writing this paper.

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

19

8. Conclusions

The technique of representing boolean functions as tables of sets, when combined with the concept
of a virtual environment, provides a powerful tool for expressing logical functions of many inputs,
the inputs being of a variety of types.

The virtual environment is created by the system designer during the analysis and specification
phase. The names which are invented during this phase represent the complete and only control
information about the inputs. There is a one-to-one correspondence between the specification of a
control problem and its implementation. Hence, automatic code generation is straightforward. A
further advantage is that during debugging a designer stays in his specification environment. To
summarize - in all stages of software development - from specification to code generation to run
time the environment does not change.

Programs written using tables avoid the coding of "if then else” and "case” statements. A
program which consists only of assignment and loop statements is easier to read and understand,
because the logic of the problem is concentrated in tables for which human comprehensive is
higher than for complex "if then else” conditions. Performance of table-based software increases,
because tables represent conditions which are prepared off-line and are accessed during the
program execution.

It is suggested that the use of software tools such as those described above will be the only way to
generate reliable software for safety-critical applications. Rather than searching for formal tools
for validation of software, let us rather eliminate the need for such tools, at least in
project-specific form, so that no new, and thus incompletely proven, software has ever to enter
service.

Acknowledgement

I have tested the virtual environment concept by designing table-driven software for BALZERS
AG, a leading manufacturer of semiconductor production equipment. With my colleagues there,
we applied this idea to build a hierarchical system of state machines for the purpose of process
control. Especially the feedback from M. Matt and R. Schmucki helped me to implement the
table-driven state machine. Acknowledgement also to Professor Q. Franzkowiak for his
contribution. J. Dobrowolski, H. Itzkowitz, L. Mekly, L. Schutte, D. Hong and P. Wolstenholme
made many helpful suggestions in the process of writing this paper.

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

APPENDIX A
DIRECT TRANSLATION OF A CONTROL FLOW DIAGRAM INTO CODE

FUNCTION Logical (a,b,c : BOOLEAN) : BOOLEAN;
BEGIN
IF ¢
THEN
Logical := TRUE
ELSE
IF b
THEN BEGIN
IF a
THEN
Logical := TRUE
ELSE
Logical := FALSE /]
= y=TRUE y=FALSE
Logical := FALSE
END;
APPENDIX B
NOTATION
{xl,. : .,xn} is the set comprising elements X o X

If X and Y are sets then:

XCY XisasubsetofY,i.e., every element of set X is a member of the set Y
X-¥ is the set of elements which are in X but not in Y

X+Y isthe set of elements which are in X or in Y

XN is the set of elements which are in X and in Y

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

APPENDIX C

VIRTUAL INPUT SIGNALS

Real inputs are multivalued and represent some physical signals. In the virtual environment they

are replaced by a description - names.

signals.

*

A switchpoint represents analog signals for control

SIGNAL VALUE NAME
Timer elapsed tim_out
Binary FALSE di_f
TRUE di_t
Digit 0 dig_0, dig_first, dig_last
1.9 dig_any, dig_first, dig_last
Command off emd_off
read cmd_read
write cmd_write
idle cmd_idle
Parameter mode = none mode_none
mode = current mode_current
mode = voltage mode_voltage
Switchpoint* high swip_high, swip_out
in_range swip_in
low swip_low, swip_out
Other (sub_sta_1 = off OR

sub_sta_1 = idle) AND
(sub_sta 2 = off OR
sub_sta_2 = idle)

sub_sta_off or_idle

or is outside that band (high or low).

AT&T - RESTRICTED
Solely for authorized persons
having a need to know pursuant
to Company Instructions

The following table shows examples of some typical input

purposes; it signals whether the analog value is within a predefined band,

